Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(19): 1907-1912
DOI: 10.1055/s-0040-1707281
DOI: 10.1055/s-0040-1707281
cluster
Integrated Synthesis Using Continuous-Flow Technologies
Photochemical Flow Oximation of Alkanes
Abstract
The nitrosation of several alkanes using tert-butyl nitrite has been performed in flow showing a remarkable reduction in the reaction time compared with batch processing. Due to the necessity for large excesses of the alkane component a continuous recycling process was devised for the preparation of larger quantities of material.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707281.
- Supporting Information
Publication History
Received: 24 July 2020
Accepted after revision: 19 August 2020
Article published online:
21 September 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Bolotin DS, Bokach NA, Kukushkin VY. Coord. Chem. Rev. 2016; 313: 62
- 2a Tamada M, Seko N, Yoshii F. Radiat. Phys. Chem. 2004; 71: 221
- 2b Seko N, Tamada M, Yoshii F. Nucl. Instrum. Methods Phys. Res., Sect. B 2005; 236: 21
-
3a
Logan RT,
Redpath J,
Roy RG.
EP 0199393, 1986
-
3b
Huang C.-T,
Pelosi SS. Jr,
Bayless AV.
US 4882354, 1989
- 3c Shahid M, Martorana MG, Cottney JE, Marshall RJ. J. Pharmacol. 1990; 100: 735
- 4a Soga S, Neckers LM, Schulte TW, Shiotsu Y, Akasaka K, Narumi H, Agatsuma T, Ikuina Y, Murakata C, Tamaoki T, Akinaga S. Cancer Res. 1999; 59: 2931
- 4b Nikitjuka A, Jirgensons A. Chem. Heterocycl. Compd. 2014; 49: 1544
- 4c Hasaneen MN. Herbicides Properties, Synthesis and Control of Weeds (2012), (accessed Apr 15, 2020). IntechOpen; London: 2012. https://www.intechopen.com/books/herbicides-properties-synthesis-and-control-of-weeds
- 4d Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Varella EA, Nicolaides D. Curr. Pharm. Des. 2008; 14: 1001
- 4e Marrs TC. Pharmacol. Ther. 1993; 58: 51
- 4f Dawson RM. J. Appl. Toxicol. 1994; 14: 317
- 4g Taylor P. Anticholinesterase Agents . In The Pharmacological Basis of Therapeutics, 9th ed. Hardman JG, Limbird LE. McGraw Hill; New York: 1996: 161-176
- 5 Wang Z. Beckmann Rearrangement and Beckmann Fragmentation. In Comprehensive Organic Name Reactions and Reagents. John Wiley & Sons; Hoboken, NJ: 2010: 288-295
- 6a Ito Y. Bull. Chem. Soc. Jpn. 1956; 29: 227
- 6b Ito Y, Matsuda S. Ann. N.Y. Acad. Sci. 1969; 147: 618
- 6c Fischer M. Angew. Chem., Int. Ed. Engl. 1978; 17: 16
- 8 Lebl R, Cantillo D, Kappe CO. React. Chem. Eng. 2019; 4: 738
- 9a Weiß R, Wagner K, Hertel M. Chem. Ber. 1984; 117: 1965
- 9b Haub EK, Lizano AC, Noble ME. Inorg. Chem. 1995; 34: 1440
- 9c Grossi L, Strazzari S. J. Org. Chem. 1999; 64: 8076
- 9d Monbaliu J.-C, Jorda J, Chevalier B, Morvan B. Chim. Oggi 2011; 29: 50
- 10 Smith DB. Photochemistry, Vol 2. RSC; London: 1997
- 11 Hong WP. Iosub A. V. Stahl S. S. J. Am. Chem. Soc. 2013; 137: 13664
- 12a Pape M. Fortschr. Chem. Forsch. 1967; 7: 559
- 12b Mackor A, Veenland JU, de Boer TJ. Recl. Trav. Chim. Pays-Bas 1969; 88: 1249
- 12c Mackor A, de Boer TJ. Recl. Trav. Chim. Pays-Bas 1969; 89: 151
- 12d Mackor A, de Boer TJ. Recl. Trav. Chim. Pays-Bas 1969; 89: 159
- 12e Mackor A, de Boer TJ. Recl. Trav. Chim. Pays-Bas 1970; 89: 164
- 13a Elliott LD, Knowles JP, Koovits PJ, Maskill KG, Ralph MJ, Lejeune G, Edwards LJ, Robinson RI, Clemens IR, Cox B, Pascoe DD, Koch G, Eberle M, Berry MB, Booker-Milburn KI. Chem. Eur. J. 2014; 20: 15226
- 13b Baumann M, Baxendale IR. Beilstein J. Org. Chem. 2015; 11: 1194
- 13c Movsisyan M, Delbeke EI. P, Berton JK. E. T, Battilocchio C, Ley SV, Stevens CV. Chem. Soc. Rev. 2016; 45: 4892
- 13d Fanelli F, Parisi G, Degennaro L, Luisi R. Beilstein J. Org. Chem. 2017; 13: 520
- 13e Fuse S, Otake Y, Nakamura H. Eur. J. Org. Chem. 2017; 44: 6466
-
13f
Plutschack MB,
Pieber B,
Gilmore K,
Seeberger PH.
Chem. Rev. 2017; 117: 11796
- 13g Shen G, Osako T, Nagaosa M, Uozumi Y. J. Org. Chem. 2018; 83: 7380
- 13h Akwi FM, Watts P. Chem. Commun. 2018; 54: 13894
- 13i Sambiagio C, Noël T. Trends Chem. 2020; 2: 92
- 13j Filippo MD, Bracken C, Baumann M. Molecules 2020; 25: 356
-
14 https://www.vapourtec.com/products/e-series-flow-chemistry-system/the-easy-photochem-features/ (accessed September 12, 2020).
- 15 Wysocki D, Teles JH, Dehn R, Trapp O, Schäfer B, Schaub T. ChemPhotoChem 2018; 2: 22
- 16 Smith DB. Photochemistry, Vol. 1, 2nd ed. RSC; London: 1970
- 17a Browne DL, Baxendale IR, Ley SV. Tetrahedron 2011; 67: 10296
- 17b Hu T, Baxendale IR, Baumann M. Molecules 2016; 21: 918
- 17c Röder L, Nicholls AJ, Baxendale IR. Molecules 2019; 24: 1996
- 18 Donaruma LG, Carmody DJ. J. Org. Chem. 1957; 22: 635
- 19 Donaruma LG. J. Org. Chem. 1958; 23: 1338
- 20 Burrell EJ. J. Phys. Chem. 1962; 66: 401
- 22a Alfassi ZB, Feldman L. Int. J. Chem. Kinet. 1981; 13: 771
- 22b CRC Handbook of Chemistry and Physics, 85th ed. Lide DR. CRC Press; Boca Raton, FL: 2004
- 23 Laarhoven LJ. J, Mulder P. J. Phys. Chem. 1997; 101: 73