Subscribe to RSS
DOI: 10.1055/s-0040-1707823
Environmentally Benign Large-Scale Synthesis of a Precursor to Vortioxetine
This research was co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: T1EDK-01161).Publication History
Received: 02 April 2020
Accepted after revision: 06 May 2020
Publication Date:
27 May 2020 (online)

Abstract
An eco-friendly, high-yielding, and transition-metal-free synthesis of 2-[(2,4-dimethylphenyl)thio]aniline precursor to vortioxetine is reported. Vortioxetine, a multi-modal acting drug with high affinity for a range of serotonergic targets, is used for the treatment of major depressive disorder (MDD). The synthesis – applicable in multi-gram scale – involves the reaction of bis(2,4-dimethyl)iodonium bromide with commercial 2-aminophenyl disulfide, whereas its reaction with 2-aminothiophenol afforded the same product but in low to moderate yields. This method works equally well in deep eutectic solvents (DESs), based on choline chloride (ChCl).
Key words
iodonium salts - vortioxetine - major depressive disorder - green chemistry - deep eutectic solvents - hypervalent iodineSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1702823.
- Supporting Information
-
References
- 1 Bang-Andersen Β, Faldt A, Mørk A, Lopez de Diego H, Holm R, Stensbøl TB, Ringgaard LM, Mealy MJ, Rock MR, Brodersen J, Jørgensen M, Moore N. Patent WO 2007/144005 A1, 2007
- 2 Murray CJ. L, Lopez AD. Science 1996; 274: 740
- 3 Bang-Andersen B, Ruhland T, Jørgensen M, Smith G, Frederiksen K, Jensen KG, Zhong H, Nielsen SM, Hogg S, Mørk A, Stensbøl TB. J. Med. Chem. 2011; 54: 3206
- 4 García-López J.-A, Çetin M, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 2156
- 5 Jacobsen CB, Meldal M, Diness F. Chem. Eur. J. 2017; 23: 846
- 6 Gaykar RN, Bhattacharjee S, Biju AT. Org. Lett. 2019; 21: 737
- 7 Jafarpour F, Asadpour M, Azizzade M, Ghasemi M, Rajai-Daryasarei S. Synthesis 2020; 52: 727
- 8 Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
- 9a Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
- 9b Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 9c Aradi K, Tóth BL, Tolnai GL, Novák Z. Synlett 2016; 27: 1456
- 9d Wang M, Chen S, Jiang X. Chem. Asian J. 2018; 13: 2195
- 9e Dohi T, Hayashi T, Ueda S, Shoji T, Komiyama K, Takeuchi H, Kita Y. Tetrahedron 2019; 75: 3617
- 9f Mayer RJ, Ofial AR, Mayr H, Legault CY. J. Am. Chem. Soc. 2020; 142: 5221
- 10a Zhu M, Jalalian N, Olofsson B. Synlett 2008; 592
- 10b Seidl TL, Sundalam SK, McCullough B, Stuart DR. J. Org. Chem. 2016; 81: 1998
- 11a Huang X, Zhu Q, Xu Y. Synth. Commun. 2001; 31: 2823
- 11b Krief A, Dumont W, Robert M. Synlett 2006; 484
- 11c Wagner AM, Sanford MS. J. Org. Chem. 2014; 79: 2263
- 11d Vaddula BR, Varma RS, Leazer J. Eur. J. Org. Chem. 2012; 6852
- 11e Li Y, Wang M, Jiang X. ACS Catal. 2017; 7: 7587
- 11f Wang M, Wei J, Fan Q, Jiang X. Chem. Commun. 2017; 53: 2918
- 12 Kraszkiewicz L, Skulski L. Synthesis 2008; 2373
- 13 Kumar A, Bhakuni BS, Prasad CD, Kumar S. Tetrahedron 2013; 69: 5383
- 14 Wang M, Jiang X. Top. Curr. Chem. 2018; 376: 285
- 15a Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V. Chem. Commun. 2001; 2010
- 15b Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. J. Am. Chem. Soc. 2004; 126: 9142
- 15c Smith EL, Abbott AP, Ryder KS. Chem. Rev. 2014; 114: 11060
- 16a Lindstrom UM. Chem. Rev. 2002; 102: 2751
- 16b Li C.-J. Chem. Rev. 2005; 105: 3095
- 16c Aqueous-Phase Organometallic Catalysis, 2nd ed. Cornils B, Herrmann WA. Wiley-VCH; Weinheim: 2004
- 16d Metal-Catalyzed Reactions in Water . Dixneuf PH, Cadierno V. Wiley-VCH; Weinheim: 2013
- 17 Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Chem. Commun. 2003; 70
- 18 Patil Y, Shingare R, Chakraborty S, Borkute R, Sarkar D, Madje B. J. Chem. Sci. 2018; 130: 22