Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(15): 1517-1522
DOI: 10.1055/s-0040-1707891
DOI: 10.1055/s-0040-1707891
letter
Silver-Catalyzed Decarboxylative Radical Addition/Cyclization of Oxamic Acids with Alkenes towards Quinolin-2-ones
Financial support from the National Natural Science Foundation of China (21302130 and 21676166), the Science and Technology Department of Zhejiang Province (2014C31141 and LGG20B060002), and the Department of Education of Zhejiang Province (Y201941045) are acknowledged with thanks.Further Information
Publication History
Received: 16 April 2020
Accepted after revision: 21 May 2020
Publication Date:
21 July 2020 (online)
Abstract
An efficient silver-catalyzed tandem decarboxylative radical addition/cyclization of oxamic acids with alkenes has been developed. This method provides a novel and straightforward protocol toward a variety of 4-aryl-3,4-dihydroquinolin-2(1H)-ones, 4-(α-carbonyl)-3,4-dihydroquinolin-2(1H)-ones, and quinolin-2(1H)-ones in aqueous solution.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707891.
- Supporting Information
-
References and Notes
- 1a Morita S, Irie Y, Saitoh Y, Kohri H. Biochem. Pharmacol. 1976; 25: 1837
- 1b Hayashi H, Miwa Y, Miki I, Ichikawa S, Yoda N, Ishii A, Kono M, Suzuki F. J. Med. Chem. 1992; 35: 4893
- 1c Hanuman JB, Katz A. Nat. Prod. Lett. 1993; 3: 227
- 1d Leeson P.-D, Baker R, Carling R.-W, Kulagowski J.-J, Mawer I.-M, Ridgill M.-P, Rowley M, Smith J.-D, Stansfield I, Stevenson G.-I, Foster A.-C, Kemp J.-A. Bioorg. Med. Chem. Lett. 1993; 3: 299
- 1e Chen M.-H, Fitzgerald P, Singh SB, O’Neill EA, Schwartz CD, Thompson CM, O’Keefe SJ, Zaller DM, Doherty JB. Bioorg. Med. Chem. Lett. 2008; 18: 2222
- 1f Kraus JM, Verlinde CL. M. J, Karimi M, Lepesheva GI, Gelb MH, Buckner FS. J. Med. Chem. 2009; 52: 1639 ; corrigendum: J. Med. Chem. 2009, 52, 4549
- 1g Claassen G, Brin E, Crogan-Grundy C, Vaillancourt MT, Zhang HZ, Cai SX, Drewe J, Tseng B, Kasibhatla S. Cancer Lett. 2009; 274: 243
- 1h Cheng P, Zhang Q, Ma Y.-B, Jiang Z.-Y, Zhang X.-M, Zhang F.-X, Chen J.-J. Bioorg. Med. Chem. Lett. 2008; 18: 3787
- 2a Anzini M, Cappelli A, Vomero S. J. Heterocycl. Chem. 1991; 28: 1809
- 2b Godard A, Fourquez JM, Tamion R, Marsais F, Quéguiner G. Synlett 1994; 235
- 2c Guarna A, Lombardi E, Machetti F, Occhiato EG, Scarpi D. J. Org. Chem. 2000; 65: 8093
- 3a Conley RT, Knopka WN. J. Org. Chem. 1964; 29: 496
- 3b Manimaran T, Thiruvengadam TK, Ramakrishnan VT. Synthesis 1975; 739
- 3c Elliott MC, Wordingham SV. Synlett 2004; 898
- 4a Tsuritani T, Yamamoto Y, Kawasaki M, Mase T. Org. Lett. 2009; 11: 1043
- 4b Felpin X.-F, Coste J, Zakri C, Fouquet E. Chem. Eur. J. 2009; 15: 7238
- 4c Zhang L, Sonaglia L, Stacey J, Lautens M. Org. Lett. 2013; 15: 2128
- 4d Wu J, Xiang S, Zeng J, Leow M, Liu X.-W. Org. Lett. 2014; 17: 222
- 4e Manikandan R, Jeganmohan M. Org. Lett. 2014; 16: 3568
- 4f Li B, Park Y, Chang S. J. Am. Chem. Soc. 2014; 136: 1125
- 4g El Ali B, Okuro K, Vasapollo G, Alper H. J. Am. Chem. Soc. 1996; 118: 4264
- 5a Wu T, Mu X, Liu G. Angew. Chem. Int. Ed. 2011; 50: 12578
- 5b Mai W.-P, Wang J.-T, Yang L.-R, Yuan J.-W, Xiao Y.-M, Mao P, Qu L.-B. Org. Lett. 2013; 16: 204
- 5c Zhou S.-L, Guo L.-N, Wang S, Duan X.-H. Chem. Commun. 2014; 50: 3589
- 5d Mai W.-P, Sun G.-C, Wang J.-T, Song G, Mao P, Yang L.-R, Yuan J.-W, Xiao Y.-M, Qu L.-B. J. Org. Chem. 2014; 79: 8094
- 5e Wang F.-X, Tian S.-K. J. Org. Chem. 2015; 80: 12697
- 5f Gao F, Yang C, Gao G.-L, Zheng L, Xia W. Org. Lett. 2015; 17: 3478
- 5g Wang Q, Han G, Liu Y, Wang Q. Adv. Synth. Catal. 2015; 357: 2464
- 5h Zhang H, Gu Z, Li Z, Pan C, Li W, Hu H, Zhu C. J. Org. Chem. 2016; 81: 2122
- 5i Wang K, Chen X, Yuan M, Yao M, Zhu H, Xue Y, Luo Z, Zhang Y. J. Org. Chem. 2018; 83: 1525
- 5j Wu J, Zhang J.-Y, Gao P.-G, Xu S.-L, Guo L.-N. J. Org. Chem. 2018; 83: 1046
- 5k Cui Z, Du D.-M. J. Org. Chem. 2018; 83: 5149
- 5l Ling A, Zhang L, Tan RX, Liu Z.-Q. J. Org. Chem. 2018; 83: 14489
- 5m Ren H, Zhang M, Zhang A. Synthesis 2018; 50: 575
- 5n Gao R.-X, Luan X.-Q, Xie Z.-Y, Yang L, Pei Y. Org. Biomol. Chem. 2019; 17: 5262
- 6a Minisci F, Coppa F, Fontana F. J. Chem. Soc., Chem. Commun. 1994; 679
- 6b Minisci F, Fontana F, Coppa F, Yan YM. J. Org. Chem. 1995; 60: 5430
- 7a Pawar GG, Robert F, Grau E, Cramail H, Landais Y. Chem. Commun. 2018; 54: 9337
- 7b DiLabio GA, Scanlan EM, Walton JC. Org. Lett. 2005; 7: 155
- 7c Kim I, Kang G, Lee K, Park B, Kang D, Jung H, He Y.-T, Baik M.-H, Hong S. J. Am. Chem. Soc. 2019; 141: 9239
- 7d Jatoi A.-H, Pawar G.-G, Robert F, Landais Y. Chem. Commun. 2019; 55: 466
- 8a Millán-Ortiz A, López-Valdez G, Cortez-Guzmán F, Miranda L.-D. Chem. Commun. 2015; 51: 8345
- 8b Betou M, Male L, Steed J.-W, Grainger R.-S. Chem. Eur. J. 2014; 20: 6505
- 8c López-Valdez G, Olguín-Uribe S, Miranda L.-D. Tetrahedron Lett. 2007; 48: 8285
- 9 Petersen WF, Taylor RJ. K, Donald JR. Org. Lett. 2017; 19: 874
- 10 Bai Q.-F, Jin C, He J.-Y, Feng G. Org. Lett. 2018; 20: 2172
- 11 Fan H, Pan P, Zhang Y, Wang W. Org. Lett. 2018; 20: 7929
- 12 Chen G, Li C, Peng J, Yuan Z, Liu P, Liu X. Org. Biomol. Chem. 2019; 17: 8527
- 13a Feng G, Jin C, Bai Q.-F, He J.-Y, Wu L. CN 108047133, 2018
- 13b Feng G, Jin C, Bai Q.-F, He J.-Y, Wu L. CN 107987017, 2018
- 14 Quinolin-2(1H)-ones 3, 5, and 7; General Procedure A 10 mL reaction vial was charged sequentially with the appropriate oxamic acid 1 (0.3 mmol, 1.0 equiv), AgNO3 (0.03 mmol, 10 mol%), Na2S2O8 (0.6 mmol, 2.0 equiv), MeCN (1.5 mL), and H2O (1.5 mL). The vial was closed and bubbled with N2 for 5 min. The appropriate alkene 2, 4, or 6 (0.9 mmol, 3.0 equiv) was then injected into the vial, and the mixture was stirred at 80 °C for 36 h. The resulting mixture was diluted with EtOAc (40 mL) and H2O (10 mL), and the organic layer was recovered, washed with brine, dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc–PE). 6-Chloro-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one (3f) Colorless oil; yield: 57.7 mg (71%; 0.3 mmol scale). IR (film): 2928, 1676, 1491, 1416, 1360, 1267, 1130 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.33 (m, 2 H), 7.30–7.23 (m, 2 H), 7.15–7.13 (m, 2 H), 6.96 (d, J = 8.4 Hz, 1 H), 6.87 (dd, J = 2.0, 0.4 Hz, 1 H), 4.19 (t, J = 7.2 Hz, 1 H), 3.36 (s, 3 H), 2.95 (d, J = 3.6 Hz, 1 H), 2.93 (d, J = 1.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 169.1, 140.2, 139.0, 131.0, 129.1, 128.4, 128.0, 127.8, 127.5, 116.2, 41.4, 38.5, 29.7. GC/MS: m/z (%) = 228 (68), 271 (100) [M+].
For selected examples, see:
For selected examples, see:
For selected examples, see: