Semin Reprod Med 2020; 38(02/03): 201-215
DOI: 10.1055/s-0040-1713429
Review Article

Cellular Origins of Endometriosis: Towards Novel Diagnostics and Therapeutics

Caitlin E. Filby
1   The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
,
Luk Rombauts
2   Department of Obstetrics and Gynaecology, Monash University, Reproductive Medicine at Women's Health, Monash Health, Monash IVF, Melbourne, Victoria, Australia
,
Grant W. Montgomery
3   UQ Genome Innovation Hub, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
,
Linda C. Giudice
4   Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, California
,
Caroline E. Gargett
1   The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
› Author Affiliations

Abstract

Endometriosis remains an enigmatic disease of unknown etiology, with delayed diagnosis and poor therapeutic options. This review will discuss the cellular, physiological, and genomic evidence of Sampson's hypothesis of retrograde menstruation as a cause of pelvic endometriosis and as the basis of phenotypic heterogeneity of the disease. We postulate that collaborative research at the single cell level focused on unlocking the cellular, physiological, and genomic mechanisms of endometriosis will be accompanied by advances in personalized diagnosis and therapies that target unique subtypes of endometriosis disease. These advances will address the clinical conundrums of endometriosis clinical care—including diagnostic delay, suboptimal treatments, disease recurrence, infertility, chronic pelvic pain, and quality of life. There is an urgent need to improve outcomes for women with endometriosis. To achieve this, it is imperative that we understand which cells form the lesions, how they arrive at distant sites, and what factors govern their ability to survive and invade at ectopic locations. This review proposes new research avenues to address these basic questions of endometriosis pathobiology that will lay the foundations for new diagnostic tools and treatment pathways.

Authors' Contributions

C.E.F. and C.E.G. defined the scope of the review. L.C.G., G.M., and L.R. advised on the scope of the review and contributed to the interpretation of the literature. L.C.G. and L.R. provided input from a clinical perspective. G.M. provided input on the genomics sections. C.E.F. drafted the review. All authors edited and approved the final manuscript.




Publication History

Article published online:
11 November 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Endometriosis in Australia: Prevalence and Hospitalisations. Canberra: AIHW; 2019
  • 2 Fuldeore MJ, Soliman AM. Prevalence and symptomatic burden of diagnosed endometriosis in the United States: national estimates from a cross-sectional survey of 59,411 women. Gynecol Obstet Invest 2017; 82 (05) 453-461
  • 3 Singh S, Soliman AM, Rahal Y, Robert C. Prevalence, symptomatic burden, and diagnosis of endometriosis in Canada: cross-sectional survey of 30 000 women. J Obstet Gynaecol Can 2020;
  • 4 Simoens S, Dunselman G, Dirksen C. et al. The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Hum Reprod 2012; 27 (05) 1292-1299
  • 5 Armour M, Lawson K, Wood A, Smith CA, Abbott J. The cost of illness and economic burden of endometriosis and chronic pelvic pain in Australia: a national online survey. PLoS One 2019; 14 (10) e0223316
  • 6 Jacobson TZ, Duffy JM, Barlow D, Koninckx PR, Garry R. Laparoscopic surgery for pelvic pain associated with endometriosis. Cochrane Database Syst Rev 2009; (04) CD001300
  • 7 Gruenwald P. Origin of endometriosis from the mesenchyme of the celomic walls. Am J Obstet Gynecol 1942; 44 (03) 470-474
  • 8 Sasson IE, Taylor HS. Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci 2008; 1127: 106-115
  • 9 Burney RO, Giudice LC. Reprint of: Pathogenesis and pathophysiology of endometriosis. Fertil Steril 2019; 112 (4S1): e153-e161
  • 10 Bulun SE, Wan Y, Matei D. Epithelial mutations in endometriosis: link to ovarian cancer. Endocrinology 2019; 160 (03) 626-638
  • 11 Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V, Martin DC. Pathogenesis of endometriosis: the genetic/epigenetic theory. Fertil Steril 2019; 111 (02) 327-340
  • 12 Sampson JA. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol 1927; 14: 422-469
  • 13 Evans J, Salamonsen LA, Winship A. et al. Fertile ground: human endometrial programming and lessons in health and disease. Nat Rev Endocrinol 2016; 12 (11) 654-667
  • 14 Ludwig H, Spornitz UM. Microarchitecture of the human endometrium by scanning electron microscopy: menstrual desquamation and remodeling. Ann N Y Acad Sci 1991; 622: 28-46
  • 15 Nguyen HPT, Xiao L, Deane JA. et al. N-cadherin identifies human endometrial epithelial progenitor cells by in vitro stem cell assays. Hum Reprod 2017; 32 (11) 2254-2268
  • 16 Boretto M, Cox B, Noben M. et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 2017; 144 (10) 1775-1786
  • 17 Turco MY, Gardner L, Hughes J. et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol 2017; 19 (05) 568-577
  • 18 Fitzgerald HC, Dhakal P, Behura SK, Schust DJ, Spencer TE. Self-renewing endometrial epithelial organoids of the human uterus. Proc Natl Acad Sci U S A 2019; 116 (46) 23132-23142
  • 19 Boretto M, Maenhoudt N, Luo X. et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol 2019; 21 (08) 1041-1051
  • 20 Bellofiore N, Ellery SJ, Mamrot J, Walker DW, Temple-Smith P, Dickinson H. First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus). Am J Obstet Gynecol 2017; 216 (01) 40.e1-40.e11
  • 21 Bellofiore N, Rana S, Dickinson H, Temple-Smith P, Evans J. Characterization of human-like menstruation in the spiny mouse: comparative studies with the human and induced mouse model. Hum Reprod 2018; 33 (09) 1715-1726
  • 22 Gargett CE. Uterine stem cells: what is the evidence?. Hum Reprod Update 2007; 13 (01) 87-101
  • 23 Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 2016; 22 (02) 137-163
  • 24 Cousins FL, , O DF, Gargett CE. Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract Res Clin Obstet Gynaecol 2018; 50: 27-38
  • 25 Gargett CE. Review article: stem cells in human reproduction. Reprod Sci 2007; 14 (05) 405-424
  • 26 Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 2009; 80 (06) 1136-1145
  • 27 Wang Y, Nicholes K, Shih IM. The origin and pathogenesis of endometriosis. Annu Rev Pathol 2020; 15: 71-95
  • 28 Boyle DP, McCluggage WG. Peritoneal stromal endometriosis: a detailed morphological analysis of a large series of cases of a common and under-recognised form of endometriosis. J Clin Pathol 2009; 62 (06) 530-533
  • 29 Kyama CM, Falconer H, Cuneo S. et al. Menstrual endometrial supernatant may induce stromal endometriosis in baboons. Front Biosci (Schol Ed) 2014; 6: 16-28
  • 30 Prianishnikov VA. A functional model of the structure of the epithelium of normal, hyperplastic and malignant human endometrium: a review. Gynecol Oncol 1978; 6 (05) 420-428
  • 31 Padykula HA, Coles LG, Okulicz WC. et al. The basalis of the primate endometrium: a bifunctional germinal compartment. Biol Reprod 1989; 40 (03) 681-690
  • 32 Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 2004; 70 (06) 1738-1750
  • 33 Masuda H, Anwar SS, Bühring HJ, Rao JR, Gargett CE. A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant 2012; 21 (10) 2201-2214
  • 34 Valentijn AJ, Palial K, Al-Lamee H. et al. SSEA-1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum Reprod 2013; 28 (10) 2695-2708
  • 35 Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod 2007; 22 (11) 2903-2911
  • 36 Nguyen HP, Sprung CN, Gargett CE. Differential expression of Wnt signaling molecules between pre- and postmenopausal endometrial epithelial cells suggests a population of putative epithelial stem/progenitor cells reside in the basalis layer. Endocrinology 2012; 153 (06) 2870-2883
  • 37 Tempest N, Maclean A, Hapangama DK. Endometrial stem cell markers: current concepts and unresolved questions. Int J Mol Sci 2018; 19 (10) E3240
  • 38 Jin S. Bipotent stem cells support the cyclical regeneration of endometrial epithelium of the murine uterus. Proc Natl Acad Sci U S A 2019; 116 (14) 6848-6857
  • 39 Syed SM, Kumar M, Ghosh A. et al. Endometrial Axin2+ cells drive epithelial homeostasis, regeneration, and cancer following oncogenic transformation. Cell Stem Cell 2020; 26 (01) 64-80.e13
  • 40 Hapangama DK, Drury J, Da Silva L. et al. Abnormally located SSEA1+ /SOX9+ endometrial epithelial cells with a basalis-like phenotype in the eutopic functionalis layer may play a role in the pathogenesis of endometriosis. Hum Reprod 2019; 34 (01) 56-68
  • 41 Seishima R, Leung C, Yada S. et al. Neonatal Wnt-dependent Lgr5 positive stem cells are essential for uterine gland development. Nat Commun 2019; 10 (01) 5378
  • 42 Tempest N, Baker AM, Wright NA, Hapangama DK. Does human endometrial LGR5 gene expression suggest the existence of another hormonally regulated epithelial stem cell niche?. Hum Reprod 2018; 33 (06) 1052-1062
  • 43 Murakami K, Lee YH, Lucas ES. et al. Decidualization induces a secretome switch in perivascular niche cells of the human endometrium. Endocrinology 2014; 155 (11) 4542-4553
  • 44 Chan RW, Ng EH, Yeung WS. Identification of cells with colony-forming activity, self-renewal capacity, and multipotency in ovarian endometriosis. Am J Pathol 2011; 178 (06) 2832-2844
  • 45 Kao AP, Wang KH, Chang CC. et al. Comparative study of human eutopic and ectopic endometrial mesenchymal stem cells and the development of an in vivo endometriotic invasion model. Fertil Steril 2011; 95 (04) 1308-15.e1
  • 46 Suda K, Nakaoka H, Yoshihara K. et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep 2018; 24 (07) 1777-1789
  • 47 Greaves E, Cousins FL, Murray A. et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol 2014; 184 (07) 1930-1939
  • 48 Leyendecker G, Herbertz M, Kunz G, Mall G. Endometriosis results from the dislocation of basal endometrium. Hum Reprod 2002; 17 (10) 2725-2736
  • 49 Salamanca A, Beltrán E. Subendometrial contractility in menstrual phase visualized by transvaginal sonography in patients with endometriosis. Fertil Steril 1995; 64 (01) 193-195
  • 50 Bulletti C, De Ziegler D, Polli V, Del Ferro E, Palini S, Flamigni C. Characteristics of uterine contractility during menses in women with mild to moderate endometriosis. Fertil Steril 2002; 77 (06) 1156-1161
  • 51 Anglesio MS, Papadopoulos N, Ayhan A. et al. Cancer-associated mutations in endometriosis without cancer. N Engl J Med 2017; 376 (19) 1835-1848
  • 52 Noë M, Ayhan A, Wang TL, Shih IM. Independent development of endometrial epithelium and stroma within the same endometriosis. J Pathol 2018; 245 (03) 265-269
  • 53 Suda K, Nakaoka H, Yoshihara K. et al. Different mutation profiles between epithelium and stroma in endometriosis and normal endometrium. Hum Reprod 2019; 34 (10) 1899-1905
  • 54 García-Solares J, Dolmans MM, Squifflet JL, Donnez J, Donnez O. Invasion of human deep nodular endometriotic lesions is associated with collective cell migration and nerve development. Fertil Steril 2018; 110 (07) 1318-1327
  • 55 O DF, Roskams T, Van den Eynde K. et al. The presence of endometrial cells in peritoneal fluid of women with and without endometriosis. Reprod Sci 2017; 24 (02) 242-251
  • 56 Lac V, Verhoef L, Aguirre-Hernandez R. et al. Iatrogenic endometriosis harbors somatic cancer-driver mutations. Hum Reprod 2019; 34 (01) 69-78
  • 57 Moffitt L, Karimnia N, Stephens A, Bilandzic M. Therapeutic targeting of collective invasion in ovarian cancer. Int J Mol Sci 2019; 20 (06) E1466
  • 58 Deane JA, Ong Y, Cousins FL, Gargett CE. Bone marrow-derived endometrial cells: transdifferentiation or misidentification?. Hum Reprod Update 2019; 25 (02) 272-274
  • 59 Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 2004; 292 (01) 81-85
  • 60 Moridi I, Mamillapalli R, Cosar E, Ersoy GS, Taylor HS. Bone marrow stem cell chemotactic activity is induced by elevated CXCl12 in endometriosis. Reprod Sci 2017; 24 (04) 526-533
  • 61 Ikoma T, Kyo S, Maida Y. et al. Bone marrow-derived cells from male donors can compose endometrial glands in female transplant recipients. Am J Obstet Gynecol 2009; 201 (06) 608.e1-608.e8
  • 62 Rei C, Williams T, Feloney M. Endometriosis in a man as a rare source of abdominal pain: a case report and review of the literature. Case Rep Obstet Gynecol 2018; 2018: 2083121
  • 63 Mortlock S, Restuadi R, Levien R. et al. Genetic regulation of methylation in human endometrium and blood and gene targets for reproductive diseases. Clin Epigenetics 2019; 11 (01) 49
  • 64 Sapkota Y, Vivo I, Steinthorsdottir V. et al; iPSYCH-SSI-Broad Group. Analysis of potential protein-modifying variants in 9000 endometriosis patients and 150000 controls of European ancestry. Sci Rep 2017; 7 (01) 11380
  • 65 Fung JN, Montgomery GW. Genetics of endometriosis: state of the art on genetic risk factors for endometriosis. Best Pract Res Clin Obstet Gynaecol 2018; 50: 61-71
  • 66 Montgomery GW, Mortlock S, Giudice LC. Should genetics now be considered the pre-eminent etiologic factor in endometriosis?. J Minim Invasive Gynecol 2020; 27 (02) 280-286
  • 67 Stefansson H, Geirsson RT, Steinthorsdottir V. et al. Genetic factors contribute to the risk of developing endometriosis. Hum Reprod 2002; 17 (03) 555-559
  • 68 Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW, Zondervan KT. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update 2014; 20 (05) 702-716
  • 69 Bellelis P, Podgaec S, Abrão MS. Environmental factors and endometriosis. Rev Assoc Med Bras (1992) 2011; 57 (04) 448-452
  • 70 Bell MR. Endocrine-disrupting actions of PCBs on brain development and social and reproductive behaviors. Curr Opin Pharmacol 2014; 19: 134-144
  • 71 Wei M, Chen X, Zhao Y, Cao B, Zhao W. Effects of prenatal environmental exposures on the development of endometriosis in female offspring. Reprod Sci 2016; 23 (09) 1129-1138
  • 72 Cobellis L, Latini G, De Felice C. et al. High plasma concentrations of di-(2-ethylhexyl)-phthalate in women with endometriosis. Hum Reprod 2003; 18 (07) 1512-1515
  • 73 Nazir S, Usman Z, Imran M, Lone KP, Ahmad G. Women diagnosed with endometriosis show high serum levels of diethyl hexyl phthalate. J Hum Reprod Sci 2018; 11 (02) 131-136
  • 74 Clément F, Xu X, Donini CF. et al. Long-term exposure to bisphenol A or benzo(a)pyrene alters the fate of human mammary epithelial stem cells in response to BMP2 and BMP4, by pre-activating BMP signaling. Cell Death Differ 2017; 24 (01) 155-166
  • 75 Klemmt PAB, Starzinski-Powitz A. Molecular and cellular pathogenesis of endometriosis. Curr Womens Health Rev 2018; 14 (02) 106-116
  • 76 Susheelamma CJ, Pillai SM, Asha Nair S. Oestrogen, progesterone and stem cells: the discordant trio in endometriosis?. Expert Rev Mol Med 2018; 20: e2
  • 77 Yang YM, Yang WX. Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget 2017; 8 (25) 41679-41689
  • 78 McKinnon BD, Kocbek V, Nirgianakis K, Bersinger NA, Mueller MD. Kinase signalling pathways in endometriosis: potential targets for non-hormonal therapeutics. Hum Reprod Update 2016; 22 (03) 382-403
  • 79 Nisenblat V, Sharkey DJ, Wang Z. et al. Plasma microRNAs display limited potential as diagnostic tools for endometriosis. J Clin Endocrinol Metab 2019; 104 (06) 1999-2022
  • 80 Horne F, Dietze R, Berkes E. et al. Impaired localization of claudin-11 in endometriotic epithelial cells compared to endometrial cells. Reprod Sci 2019; 26 (09) 1181-1192
  • 81 Gomes VA, Bonocher CM, Rosa-E-Silva JC, de Paz CCP, Ferriani RA, Meola J. The apoptotic, angiogenic and cell proliferation genes CD63, S100A6 e GNB2L1 are altered in patients with endometriosis. Rev Bras Ginecol Obstet 2018; 40 (10) 606-613
  • 82 Liang Y, Liu D, Yang F. et al. Perineural invasion in endometriotic lesions contributes to endometriosis-associated pain. J Pain Res 2018; 11: 1999-2009
  • 83 Browne AS, Yu J, Huang RP, Francisco AM, Sidell N, Taylor RN. Proteomic identification of neurotrophins in the eutopic endometrium of women with endometriosis. Fertil Steril 2012; 98 (03) 713-719
  • 84 Kato N, Iwase A, Ishida C. et al. Upregulation of fibroblast growth factors caused by heart and neural crest derivatives expressed 2 suppression in endometriotic cells: a possible therapeutic target in endometriosis. Reprod Sci 2019; 26 (07) 979-987
  • 85 Lin X, Dai Y, Xu W. et al. Hypoxia promotes ectopic adhesion ability of endometrial stromal cells via TGF-β1/Smad signaling in endometriosis. Endocrinology 2018; 159 (04) 1630-1641
  • 86 Warren LA, Shih A, Renteira SM. et al. Analysis of menstrual effluent: diagnostic potential for endometriosis. Mol Med 2018; 24 (01) 1
  • 87 Oosterlynck DJ, Meuleman C, Waer M, Koninckx PR. CO2-laser excision of endometriosis does not improve the decreased natural killer activity. Acta Obstet Gynecol Scand 1994; 73 (04) 333-337
  • 88 Sun H, Li D, Yuan M, Li Q, Li N, Wang G. Eutopic stromal cells of endometriosis promote neuroangiogenesis via exosome pathway. Biol Reprod 2018
  • 89 Walankiewicz M, Grywalska E, Polak G. et al. The increase of circulating PD-1- and PD-L1-expressing lymphocytes in endometriosis: correlation with clinical and laboratory parameters. Mediators Inflamm 2018; 2018: 7041342
  • 90 Evans J, Infusini G, McGovern J. et al. Menstrual fluid factors facilitate tissue repair: identification and functional action in endometrial and skin repair. FASEB J 2019; 33 (01) 584-605
  • 91 Kuijsters NPM, Methorst WG, Kortenhorst MSQ, Rabotti C, Mischi M, Schoot BC. Uterine peristalsis and fertility: current knowledge and future perspectives: a review and meta-analysis. Reprod Biomed Online 2017; 35 (01) 50-71
  • 92 Duquette RA, Shmygol A, Vaillant C. et al. Vimentin-positive, c-kit-negative interstitial cells in human and rat uterus: a role in pacemaking?. Biol Reprod 2005; 72 (02) 276-283
  • 93 Leyendecker G, Kunz G, Wildt L, Beil D, Deininger H. Uterine hyperperistalsis and dysperistalsis as dysfunctions of the mechanism of rapid sperm transport in patients with endometriosis and infertility. Hum Reprod 1996; 11 (07) 1542-1551
  • 94 Bulletti C, de Ziegler D. Uterine contractility and embryo implantation. Curr Opin Obstet Gynecol 2006; 18 (04) 473-484
  • 95 Edwards RK, Euliano NR, Singh S. et al. Evaluating fundal dominant contractions on spatiotemporal electrohysterography as a marker for effective labor contractions. Am J Perinatol 2019; 36 (09) 924-929
  • 96 Sammali F, Kuijsters NPM, Huang Y. et al. Dedicated ultrasound speckle tracking for quantitative analysis of uterine motion outside pregnancy. IEEE Trans Ultrason Ferroelectr Freq Control 2019; 66 (03) 581-590
  • 97 Gargett CE, Schwab KE, Brosens JJ, Puttemans P, Benagiano G, Brosens I. Potential role of endometrial stem/progenitor cells in the pathogenesis of early-onset endometriosis. Mol Hum Reprod 2014; 20 (07) 591-598
  • 98 Brosens I, Gargett CE, Guo SW. et al. Origins and progression of adolescent endometriosis. Reprod Sci 2016; 23 (10) 1282-1288
  • 99 Turner G, Coulthard MG. Premenarchal endometrial shedding revealed by peritoneal dialysis. Arch Dis Child 1995; 73 (01) 88-89
  • 100 Barbieri RL. Stenosis of the external cervical os: an association with endometriosis in women with chronic pelvic pain. Fertil Steril 1998; 70 (03) 571-573
  • 101 Hudelist G, Fritzer N, Thomas A. et al. Diagnostic delay for endometriosis in Austria and Germany: causes and possible consequences. Hum Reprod 2012; 27 (12) 3412-3416
  • 102 Long Q, Liu X, Guo SW. Surgery accelerates the development of endometriosis in mice. Am J Obstet Gynecol 2016; 215 (03) 320.e1-320.e15
  • 103 Guerriero S, Condous G, van den Bosch T. et al. Systematic approach to sonographic evaluation of the pelvis in women with suspected endometriosis, including terms, definitions and measurements: a consensus opinion from the International Deep Endometriosis Analysis (IDEA) group. Ultrasound Obstet Gynecol 2016; 48 (03) 318-332
  • 104 Menakaya UA, Rombauts L, Johnson NP. Diagnostic laparoscopy in pre-surgical planning for higher stage endometriosis: Is it still relevant?. Aust N Z J Obstet Gynaecol 2016; 56 (05) 518-522
  • 105 Okaro E, Condous G, Khalid A. et al. The use of ultrasound-based ‘soft markers’ for the prediction of pelvic pathology in women with chronic pelvic pain--can we reduce the need for laparoscopy?. BJOG 2006; 113 (03) 251-256
  • 106 Fassbender A, Burney RO, Dorien FO, D'Hooghe T, Giudice L. Update on biomarkers for the detection of endometriosis. BioMed Res Int 2015; 2015: 130854
  • 107 Dorien FO, Waelkens E, Vanhie A, Peterse D, Fassbender A, D'Hooghe T. The use of antibody arrays in the discovery of new plasma biomarkers for endometriosis. Reprod Sci 2020; 27 (02) 751-762
  • 108 Dorien FO, Flores I, Waelkens E, D'Hooghe T. Noninvasive diagnosis of endometriosis: review of current peripheral blood and endometrial biomarkers. Best Pract Res Clin Obstet Gynaecol 2018; 50: 72-83
  • 109 Cao Y, Liu X, Guo SW. Plasma high mobility group box 1 (HMGB1), osteopontin (OPN), and hyaluronic acid (HA) as admissible biomarkers for endometriosis. Sci Rep 2019; 9 (01) 9272
  • 110 van der Molen RG, Schutten JH, van Cranenbroek B. et al. Menstrual blood closely resembles the uterine immune micro-environment and is clearly distinct from peripheral blood. Hum Reprod 2014; 29 (02) 303-314
  • 111 Koks CA, Dunselman GA, de Goeij AF, Arends JW, Evers JL. Evaluation of a menstrual cup to collect shed endometrium for in vitro studies. Fertil Steril 1997; 68 (03) 560-564
  • 112 McKinnon B, Mueller M, Montgomery G. Progesterone resistance in endometriosis: An acquired property?. Trends Endocrinol Metab 2018; 29 (08) 535-548
  • 113 Pysz MA, Willmann JK. Targeted contrast-enhanced ultrasound: an emerging technology in abdominal and pelvic imaging. Gastroenterology 2011; 140 (03) 785-790
  • 114 Morel DR, Schwieger I, Hohn L. et al. Human pharmacokinetics and safety evaluation of SonoVue, a new contrast agent for ultrasound imaging. Invest Radiol 2000; 35 (01) 80-85
  • 115 Wilson SR, Burns PN. Microbubble-enhanced US in body imaging: what role?. Radiology 2010; 257 (01) 24-39
  • 116 Fleischer AC, Lyshchik A, Andreotti RF, Hwang M, Jones III HW, Fishman DA. Advances in sonographic detection of ovarian cancer: depiction of tumor neovascularity with microbubbles. AJR Am J Roentgenol 2010; 194 (02) 343-348
  • 117 Faccioli N, Crippa S, Bassi C, D'Onofrio M. Contrast-enhanced ultrasonography of the pancreas. Pancreatology 2009; 9 (05) 560-566
  • 118 Groothuis PG, Nap AW, Winterhager E, Grümmer R. Vascular development in endometriosis. Angiogenesis 2005; 8 (02) 147-156
  • 119 Bermot C, Labauge P, Limot O, Louboutin A, Fauconnier A, Huchon C. Performance of MRI for the detection of anterior pelvic endometriotic lesions. J Gynecol Obstet Hum Reprod 2018; 47 (10) 499-503
  • 120 Ersahin A, Celik O, Acet M. et al. Impact of endometrioma resection on eutopic endometrium metabolite contents: noninvasive evaluation of endometrium receptivity. Reprod Sci 2017; 24 (05) 790-795
  • 121 Young VJ, Brown JK, Maybin J, Saunders PT, Duncan WC, Horne AW. Transforming growth factor-β induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis. J Clin Endocrinol Metab 2014; 99 (09) 3450-3459
  • 122 Agarwal SK, Chapron C, Giudice LC. et al. Clinical diagnosis of endometriosis: a call to action. Am J Obstet Gynecol 2019; 220 (04) 354.e1-354.e12
  • 123 Johnson NP, Hummelshoj L, Adamson GD. et al; World Endometriosis Society Sao Paulo Consortium. World Endometriosis Society consensus on the classification of endometriosis. Hum Reprod 2017; 32 (02) 315-324
  • 124 Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod 2010; 16 (11) 818-834
  • 125 Blumenkrantz MJ, Gallagher N, Bashore RA, Tenckhoff H. Retrograde menstruation in women undergoing chronic peritoneal dialysis. Obstet Gynecol 1981; 57 (05) 667-670
  • 126 Halme J, Hammond MG, Hulka JF, Raj SG, Talbert LM. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol 1984; 64 (02) 151-154
  • 127 Bokor A, Debrock S, Drijkoningen M, Goossens W, Fulop V, D’Hooghe T. Quantity and quality of retrograde menstruation: a case control study. Reprod Biol Endocrinol 2009; 7: 123
  • 128 van der Linden PJ, Dunselman GA, de Goeij AF. et al. Epithelial cells in peritoneal fluid-of endometrial origin?. Am J Obstet Gynecol 1995; 173 (02) 566-570
  • 129 Bartosik D, Jacobs SL, Kelly LJ. Endometrial tissue in peritoneal fluid. Fertil Steril 1986; 46 (05) 796-800