Digestive Disease Interventions 2020; 04(04): 351-357
DOI: 10.1055/s-0040-1718904
Review Article

Immunotherapy in Pancreatic Cancer

Bassel F. El-Rayes
1   Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
,
Mehmet Akce
1   Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
› Author Affiliations

Abstract

Pancreatic cancer has a dismal prognosis and is projected to be the second most common cause of cancer-related mortality by 2030. Although modest improvement in survival with current conventional cytotoxic chemotherapy-based regimens, 5-year overall survival is still 9%. Despite becoming standard of care in several malignancies, single agent or dual check point inhibitor therapy is not effective in pancreatic cancer except in subgroup of patients with high microsatellite instability or high tumor mutational burden. Profoundly immunosuppressive tumor microenvironment of pancreatic cancer is a major barrier for success of immunotherapy. Rigorous research efforts are underway to explore immune-based combination therapy with chemotherapy, radiation therapy, stroma-modifying agents, vaccines, and targeted therapies. This article aims to provide a review of the ongoing research in pancreatic cancer immunotherapy.



Publication History

Received: 14 July 2020

Accepted: 19 August 2020

Article published online:
16 November 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70 (01) 7-30
  • 2 Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74 (11) 2913-2921
  • 3 Gordon-Dseagu VL, Devesa SS, Goggins M, Stolzenberg-Solomon R. Pancreatic cancer incidence trends: evidence from the Surveillance, Epidemiology and End Results (SEER) population-based data. Int J Epidemiol 2018; 47 (02) 427-439
  • 4 Von Hoff DD, Ervin T, Arena FP. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369 (18) 1691-1703
  • 5 Conroy T, Desseigne F, Ychou M. et al. Groupe Tumeurs Digestives of Unicancer, PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364 (19) 1817-1825
  • 6 Le DT, Durham JN, Smith KN. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357 (6349): 409-413
  • 7 Marabelle A, Fakih M, Lopez J. et al. Association of tumour mutational burden with outcomes in patients with select advanced solid tumours treated with pembrolizumab in KEYNOTE-158. Annals of Oncology 2019; 30: v477-v478
  • 8 Brahmer JR, Tykodi SS, Chow LQM. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366 (26) 2455-2465
  • 9 Royal RE, Levy C, Turner K. et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 2010; 33 (08) 828-833
  • 10 Sharma P, Dirix L, Vos FYFLD. et al. Efficacy and tolerability of tremelimumab in patients with metastatic pancreatic ductal adenocarcinoma. J Clin Oncol 2018; 36 (04) 470
  • 11 Young K, Hughes DJ, Cunningham D, Starling N. Immunotherapy and pancreatic cancer: unique challenges and potential opportunities. Ther Adv Med Oncol 2018; (epub ahead of print)
  • 12 Balachandran VP, Łuksza M, Zhao JN. et al. Australian Pancreatic Cancer Genome Initiative, Garvan Institute of Medical Research, Prince of Wales Hospital, Royal North Shore Hospital, University of Glasgow, St Vincent's Hospital, QIMR Berghofer Medical Research Institute, University of Melbourne, Centre for Cancer Research, University of Queensland, Institute for Molecular Bioscience, Bankstown Hospital, Liverpool Hospital, Royal Prince Alfred Hospital, Chris O'Brien Lifehouse, Westmead Hospital, Fremantle Hospital, St John of God Healthcare, Royal Adelaide Hospital, Flinders Medical Centre, Envoi Pathology, Princess Alexandria Hospital, Austin Hospital, Johns Hopkins Medical Institutes, ARC-Net Centre for Applied Research on Cancer. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 2017; 551 (7681): 512-516
  • 13 Looi C-K, Chung FF-L, Leong C-O, Wong S-F, Rosli R, Mai C-W. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J Exp Clin Cancer Res 2019; 38 (01) 162
  • 14 Akce M, Zaidi MY, Waller EK, El-Rayes BF, Lesinski GB. The potential of CAR T cell therapy in pancreatic cancer. Front Immunol 2018; 9: 2166
  • 15 Li KY, Yuan JL, Trafton D. et al. Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chronic Dis Transl Med 2020; 6 (01) 6-17
  • 16 Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res 2012; 10 (11) 1403-1418
  • 17 Sarantis P, Koustas E, Papadimitropoulou A, Papavassiliou AG, Karamouzis MV. Pancreatic ductal adenocarcinoma: treatment hurdles, tumor microenvironment and immunotherapy. World J Gastrointest Oncol 2020; 12 (02) 173-181
  • 18 Whatcott CJ, Diep CH, Jiang P. et al. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clin Cancer Res 2015; 21 (15) 3561-3568
  • 19 O'Reilly EM, Oh D-Y, Dhani N. et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol 2019; 5 (10) 1431-1438
  • 20 Hu ZI, Shia J, Stadler ZK. et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin Cancer Res 2018; 24 (06) 1326-1336
  • 21 Cook AM, Lesterhuis WJ, Nowak AK, Lake RA. Chemotherapy and immunotherapy: mapping the road ahead. Curr Opin Immunol 2016; 39: 23-29
  • 22 Haynes NM, van der Most RG, Lake RA, Smyth MJ. Immunogenic anti-cancer chemotherapy as an emerging concept. Curr Opin Immunol 2008; 20 (05) 545-557
  • 23 McDonnell AM, Lesterhuis WJ, Khong A. et al. Tumor-infiltrating dendritic cells exhibit defective cross-presentation of tumor antigens, but is reversed by chemotherapy. Eur J Immunol 2015; 45 (01) 49-59
  • 24 Nowak AK, Lake RA, Marzo AL. et al. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol 2003; 170 (10) 4905-4913
  • 25 Aglietta M, Barone C, Sawyer MB. et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol 2014; 25 (09) 1750-1755
  • 26 Weiss GJ, Blaydorn L, Beck J. et al. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Invest New Drugs 2018; 36 (01) 96-102
  • 27 Reits EA, Hodge JW, Herberts CA. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 2006; 203 (05) 1259-1271
  • 28 Sato H, Okonogi N, Nakano T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment. Int J Clin Oncol 2020; 25 (05) 801-809
  • 29 Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 2014; 5 (02) 403-416
  • 30 Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. OncoImmunology 2014; 3: e28518
  • 31 Punnanitinont A, Kannisto ED, Matsuzaki J. et al. Sublethal radiation affects antigen processing and presentation genes to enhance immunogenicity of cancer cells. Int J Mol Sci 2020; 21 (07) E2573
  • 32 Herter-Sprie GS, Koyama S, Korideck H. et al. Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. JCI Insight 2016; 1 (09) e87415
  • 33 Azad A, Yin Lim S, D'Costa Z. et al. PD-L1 blockade enhances response of pancreatic ductal adenocarcinoma to radiotherapy. EMBO Mol Med 2017; 9 (02) 167-180
  • 34 Parikh A, Wo JYL, Ryan DP. et al. A phase II study of ipilimumab and nivolumab with radiation in metastatic pancreatic adenocarcinoma. J Clin Oncol 2019; 37: 391
  • 35 Vacchelli E, Martins I, Eggermont A. et al. Trial watch: peptide vaccines in cancer therapy. OncoImmunology 2012; 1 (09) 1557-1576
  • 36 Jaffee EM, Hruban RH, Biedrzycki B. et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 2001; 19 (01) 145-156
  • 37 Lutz E, Yeo CJ, Lillemoe KD. et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A Phase II trial of safety, efficacy, and immune activation. Ann Surg 2011; 253 (02) 328-335
  • 38 Le DT, Picozzi VJ, Ko AH. et al. Results from a phase IIb, randomized, multicenter study of GVAX pancreas and CRS-207 compared with Chemotherapy in Adults with Previously Treated Metastatic Pancreatic Adenocarcinoma (ECLIPSE Study). Clin Cancer Res 2019; 25 (18) 5493-5502
  • 39 Le DT, Lutz E, Uram JN. et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother 2013; 36 (07) 382-389
  • 40 Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014; 41 (01) 49-61
  • 41 Ostuni R, Kratochvill F, Murray PJ, Natoli G. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol 2015; 36 (04) 229-239
  • 42 Zhang QW, Liu L, Gong CY. et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One 2012; 7 (12) e50946
  • 43 Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 2014; 6 (06) a021857
  • 44 Zhu Y, Knolhoff BL, Meyer MA. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 2014; 74 (18) 5057-5069
  • 45 Mitchem JB, Brennan DJ, Knolhoff BL. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 2013; 73 (03) 1128-1141
  • 46 32nd Annual Meeting and Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2017): late-breaking abstracts. J Immunother Cancer 2017; 5 (03) 89
  • 47 Wang-Gillam A, O'Reilly EM, Bendell JC. et al. A randomized phase II study of cabiralizumab (cabira) + nivolumab (nivo) ± chemotherapy (chemo) in advanced pancreatic ductal adenocarcinoma (PDAC). J Clin Oncol 2019; 37 (04) 465
  • 48 Cassier PA, Garin G, Eberst L. et al. MEDIPLEX: a phase 1 study of durvalumab (D) combined with pexidartinib (P) in patients (pts) with advanced pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). J Clin Oncol 2019; 37 (15) 2579
  • 49 Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 2014; 14 (09) 598-610
  • 50 Jiang H, Hegde S, Knolhoff BL. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 2016; 22 (08) 851-860
  • 51 Stokes JB, Adair SJ, Slack-Davis JK. et al. Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol Cancer Ther 2011; 10 (11) 2135-2145
  • 52 Wang-Gillam A, Lockhart AC, Tan BR. et al. Phase I study of defactinib combined with pembrolizumab and gemcitabine in patients with advanced cancer. J Clin Oncol 2018; 36 (15) 2561
  • 53 Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229 (01) 152-172
  • 54 Vonderheide RH, Bajor DL, Winograd R, Evans RA, Bayne LJ, Beatty GL. CD40 immunotherapy for pancreatic cancer. Cancer Immunol Immunother 2013; 62 (05) 949-954
  • 55 Beatty GL, Chiorean EG, Fishman MP. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011; 331 (6024): 1612-1616
  • 56 Byrne KT, Vonderheide RH. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Rep 2016; 15 (12) 2719-2732
  • 57 Beatty GL, Torigian DA, Chiorean EG. et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res 2013; 19 (22) 6286-6295
  • 58 Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond. Nat Rev Cancer 2010; 10 (04) 293-301
  • 59 Sahin IH, Lowery MA, Stadler ZK. et al. Genomic instability in pancreatic adenocarcinoma: a new step towards precision medicine and novel therapeutic approaches. Expert Rev Gastroenterol Hepatol 2016; 10 (08) 893-905
  • 60 O'Reilly EM, Lee JW, Zalupski M. et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. J Clin Oncol 2020; 38 (13) 1378-1388
  • 61 Pishvaian MJ, Blais EM, Brody JR. et al. Outcomes in pancreatic adenocarcinoma (PDA) patients (pts) with genetic alterations in DNA damage repair (DDR) pathways: Results from the Know Your Tumor (KYT) program. J Clin Oncol 2019; 37 (04) 191
  • 62 Kaufman B, Shapira-Frommer R, Schmutzler RK. et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015; 33 (03) 244-250
  • 63 Golan T, Hammel P, Reni M. et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med 2019; 381 (04) 317-327
  • 64 Vikas P, Borcherding N, Chennamadhavuni A, Garje R. Therapeutic potential of combining PARP inhibitor and immunotherapy in solid tumors. Front Oncol 2020; 10: 570
  • 65 Li A, Yi M, Qin S, Chu Q, Luo S, Wu K. Prospects for combining immune checkpoint blockade with PARP inhibition. J Hematol Oncol 2019; 12 (01) 98
  • 66 Sato H, Niimi A, Yasuhara T. et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun 2017; 8 (01) 1751
  • 67 Shen J, Zhao W, Ju Z. et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res 2019; 79 (02) 311-319
  • 68 Mouw KW, Goldberg MS, Konstantinopoulos PA, D'Andrea AD. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov 2017; 7 (07) 675-693
  • 69 Wang Z, Sun K, Xiao Y. et al. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci Rep 2019; 9 (01) 1853
  • 70 Reiss KA, Mick R, O'Hara MH. et al. A randomized phase II trial of niraparib plus either nivolumab or ipilimumab in patients with advanced pancreatic cancer whose cancer has not progressed on platinum-based therapy. J Clin Oncol 2019; 37 (15) 4161
  • 71 Vainer N, Dehlendorff C, Johansen JS. Systematic literature review of IL-6 as a biomarker or treatment target in patients with gastric, bile duct, pancreatic and colorectal cancer. Oncotarget 2018; 9 (51) 29820-29841
  • 72 Mace TA, Shakya R, Pitarresi JR. et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 2018; 67 (02) 320-332
  • 73 Nagaraju GP, Park W, Wen J. et al. Antiangiogenic effects of ganetespib in colorectal cancer mediated through inhibition of HIF-1α and STAT-3. Angiogenesis 2013; 16 (04) 903-917
  • 74 Proia DA, Kaufmann GF. Targeting heat-shock protein 90 (HSP90) as a complementary strategy to immune checkpoint blockade for cancer therapy. Cancer Immunol Res 2015; 3 (06) 583-589
  • 75 Zaidi M, Zhang Y, Ware MB. et al. Heat shock protein 90 inhibitors alter pancreatic stellate cell cytokine production and enhances the efficacy of immune checkpoint blockade in pancreatic cancer: AACR Cancer Res. 2019 79. (13):abstract 4074
  • 76 Akce M, Alese OB, Shaib WL, Wu C, Lesinski GB, El-Rayes BF. Phase Ib trial of pembrolizumab and XL888 in patients with advanced gastrointestinal malignancies: Results of the dose-escalation phase. J Clin Oncol 2020; 38 (04) 830
  • 77 Knochelmann HM, Smith AS, Dwyer CJ, Wyatt MM, Mehrotra S, Paulos CM. CAR T cells in solid tumors: blueprints for building effective therapies. Front Immunol 2018; 9: 1740
  • 78 Schuster SJ, Svoboda J, Chong EA. et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017; 377 (26) 2545-2554
  • 79 Neelapu SS, Locke FL, Bartlett NL. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017; 377 (26) 2531-2544
  • 80 Chen Y, Ayaru L, Mathew S, Morris E, Pereira SP, Behboudi S. Expansion of anti-mesothelin specific CD4+ and CD8+ T cell responses in patients with pancreatic carcinoma. PLoS One 2014; 9 (02) e88133
  • 81 Beatty GL, Haas AR, Maus MV. et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2014; 2 (02) 112-120
  • 82 Chmielewski M, Hahn O, Rappl G. et al. T cells that target carcinoembryonic antigen eradicate orthotopic pancreatic carcinomas without inducing autoimmune colitis in mice. Gastroenterology 2012; 143 (04) 1095-107.e2
  • 83 Posey Jr AD, Schwab RD, Boesteanu AC. et al. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 2016; 44 (06) 1444-1454
  • 84 Abate-Daga D, Lagisetty KH, Tran E. et al. A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Hum Gene Ther 2014; 25 (12) 1003-1012
  • 85 Tran E, Chinnasamy D, Yu Z. et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med 2013; 210 (06) 1125-1135
  • 86 Maliar A, Servais C, Waks T. et al. Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 2012; 143 (05) 1375-1384.e5
  • 87 Beatty GL, O'Hara MH, Lacey SF. et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a Phase 1 trial. Gastroenterology 2018; 155 (01) 29-32
  • 88 Becerra CR, Hoof P, Paulson AS. et al. Ligand-inducible, prostate stem cell antigen (PSCA)-directed GoCAR-T cells in advanced solid tumors: preliminary results from a dose escalation. J Clin Oncol 2019; 37 (04) 283
  • 89 Wainberg Z, Piha-Paul S, Luke J. et al. First-in-human phase 1 dose escalation and expansion of a novel combination, anti–CSF-1 receptor (cabiralizumab) plus anti–PD-1 (nivolumab), in patients with advanced solid tumors. J Immunother Cancer 2017; 5 (89) 101-186