Subscribe to RSS
DOI: 10.1055/s-0040-1719177
Insights into the Role of Granulocyte Colony-Stimulating Factor in Severe Alcoholic Hepatitis
Abstract
Alcohol use disorder is the predominant cause of chronic liver disease globally. The standard of care for the treatment of alcoholic hepatitis, corticosteroids, has been shown to provide a therapeutic response in ∼60% of carefully selected patients with a short-term survival benefit. The patients who do not respond to steroids, or are ineligible due to infections or very severe disease, have little options other than liver transplantation. There is, thus, a large unmet need for new therapeutic strategies for this large and sick group of patients. Granulocyte colony stimulating factor (G-CSF) has been shown to favorably modulate the intrahepatic immune milieu and stimulate the regenerative potential of the liver. Initial studies have shown encouraging results with G-CSF in patients with severe alcoholic hepatitis. It has also been found to help steroid nonresponsive patients. There is, however, a need for careful selection of patients, regular dose monitoring and close observation for adverse events of G-CSF. In this review, we analyze the basis of the potential benefits, clinical studies, cautions and challenges in the use of G-CSF in alcoholic hepatitis.
Financial Disclosures
None.
Publication History
Article published online:
09 February 2021
© 2021. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70 (01) 151-171
- 2 Sohail U, Satapathy SK. Diagnosis and management of alcoholic hepatitis. Clin Liver Dis 2012; 16 (04) 717-736
- 3 Crabb DW, Bataller R, Chalasani NP. et al; NIAAA Alcoholic Hepatitis Consortia. Standard definitions and common data elements for clinical trials in patients with alcoholic hepatitis: recommendation from the NIAAA alcoholic hepatitis consortia. Gastroenterology 2016; 150 (04) 785-790
- 4 Altamirano J, Miquel R, Katoonizadeh A. et al. A histologic scoring system for prognosis of patients with alcoholic hepatitis. Gastroenterology 2014; 146 (05) 1231-9.e1 , 6
- 5 Sidhu SS, Goyal O, Kishore H, Sidhu S. New paradigms in management of alcoholic hepatitis: a review. Hepatol Int 2017; 11 (03) 255-267
- 6 O'Shea RS, Dasarathy S, McCullough AJ. Practice Guideline Committee of the American Association for the Study of Liver Diseases, Practice Parameters Committee of the American College of Gastroenterology. Alcoholic liver disease. Hepatology 2010; 51 (01) 307-328
- 7 Duseja A. Combination therapy in severe alcoholic hepatitis-doesn't really work. J Clin Exp Hepatol 2013; 3 (04) 353-354
- 8 Wang M, You Q, Lor K, Chen F, Gao B, Ju C. Chronic alcohol ingestion modulates hepatic macrophage populations and functions in mice. J Leukoc Biol 2014; 96 (04) 657-665
- 9 Lazaro R, Wu R, Lee S. et al. Osteopontin deficiency does not prevent but promotes alcoholic neutrophilic hepatitis in mice. Hepatology 2015; 61 (01) 129-140
- 10 Kedarisetty CK, Anand L, Khanam A. et al. Growth factors enhance liver regeneration in acute-on-chronic liver failure. Hepatol Int 2014; 8 (02) (Suppl. 02) 514-525
- 11 Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 2015; 12 (04) 231-242
- 12 Li M, He Y, Zhou Z. et al. MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47phox-oxidative stress pathway in neutrophils. Gut 2017; 66 (04) 705-715
- 13 Barnes MA, McMullen MR, Roychowdhury S. et al. Macrophage migration inhibitory factor contributes to ethanol-induced liver injury by mediating cell injury, steatohepatitis, and steatosis. Hepatology 2013; 57 (05) 1980-1991
- 14 Marin V, Poulsen K, Odena G. et al. Hepatocyte-derived macrophage migration inhibitory factor mediates alcohol-induced liver injury in mice and patients. J Hepatol 2017; 67 (05) 1018-1025
- 15 Ambade A, Catalano D, Lim A, Kopoyan A, Shaffer SA, Mandrekar P. Inhibition of heat shock protein 90 alleviates steatosis and macrophage activation in murine alcoholic liver injury. J Hepatol 2014; 61 (04) 903-911
- 16 Lanthier N, Rubbia-Brandt L, Lin-Marq N. et al. Hepatic cell proliferation plays a pivotal role in the prognosis of alcoholic hepatitis. J Hepatol 2015; 63 (03) 609-621
- 17 Prame Kumar K, Nicholls AJ, Wong CHY. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res 2018; 371 (03) 551-565
- 18 Cai Y, Xu MJ, Koritzinsky EH. et al. Mitochondrial DNA-enriched microparticles promote acute-on-chronic alcoholic neutrophilia and hepatotoxicity. JCI Insight 2017; 2 (14) 92634
- 19 Dominguez M, Miquel R, Colmenero J. et al. Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis. Gastroenterology 2009; 136 (05) 1639-1650
- 20 Rajkovic IA, Williams R. Abnormalities of neutrophil phagocytosis, intracellular killing and metabolic activity in alcoholic cirrhosis and hepatitis. Hepatology 1986; 6 (02) 252-262
- 21 Mookerjee RP, Stadlbauer V, Lidder S. et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. Hepatology 2007; 46 (03) 831-840
- 22 Dippold RP, Vadigepalli R, Gonye GE, Patra B, Hoek JB. Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration. Alcohol Clin Exp Res 2013; 37 (Suppl. 01) E59-E69
- 23 Juskeviciute E, Dippold RP, Antony AN, Swarup A, Vadigepalli R, Hoek JB. Inhibition of miR-21 rescues liver regeneration after partial hepatectomy in ethanol-fed rats. Am J Physiol Gastrointest Liver Physiol 2016; 311 (05) G794-G806
- 24 Fang JW, Bird GL, Nakamura T, Davis GL, Lau JY. Hepatocyte proliferation as an indicator of outcome in acute alcoholic hepatitis. Lancet 1994; 343 (8901): 820-823
- 25 French SW, Liao G, Li J. et al. What are the mechanisms of regeneration inhibition in alcoholic hepatitis?. Exp Mol Pathol 2016; 100 (03) 502-505
- 26 Dubuquoy L, Louvet A, Lassailly G. et al. Progenitor cell expansion and impaired hepatocyte regeneration in explanted livers from alcoholic hepatitis. Gut 2015; 64 (12) 1949-1960
- 27 Sancho-Bru P, Altamirano J, Rodrigo-Torres D. et al. Liver progenitor cell markers correlate with liver damage and predict short-term mortality in patients with alcoholic hepatitis. Hepatology 2012; 55 (06) 1931-1941
- 28 Shubham S, Kumar D, Rooge S. et al. Cellular and functional loss of liver endothelial cells correlates with poor hepatocyte regeneration in acute-on-chronic liver failure. Hepatol Int 2019; 13 (06) 777-787
- 29 Hyun J, Sun Z, Ahmadi AR. et al. Epithelial splicing regulatory protein 2-mediated alternative splicing reprograms hepatocytes in severe alcoholic hepatitis. J Clin Invest 2020; 130 (04) 2129-2145
- 30 Aguilar-Bravo B, Rodrigo-Torres D, Ariño S. et al. Ductular reaction cells display an inflammatory profile and recruit neutrophils in alcoholic hepatitis. Hepatology 2019; 69 (05) 2180-2195
- 31 Odena G, Chen J, Lozano JJ. et al. LPS-TLR4 pathway mediates ductular cell expansion in alcoholic hepatitis. Sci Rep 2016; 6: 35610
- 32 Maddrey WC, Boitnott JK, Bedine MS, Weber Jr FL, Mezey E, White Jr RI. Corticosteroid therapy of alcoholic hepatitis. Gastroenterology 1978; 75 (02) 193-199
- 33 Crabb DW, Im GY, Szabo G, Mellinger JL, Lucey MR. Diagnosis and treatment of alcohol related liver diseases: 2019 Practice Guidance from American Association for the Study of Liver Diseases. Hepatology 2019;
- 34 Hughes E, Hopkins LJ, Parker R. Survival from alcoholic hepatitis has not improved over time. PLoS One 2018; 13 (02) e0192393
- 35 Potts JR, Goubet S, Heneghan MA, Verma S. Determinants of long-term outcome in severe alcoholic hepatitis. Aliment Pharmacol Ther 2013; 38 (06) 584-595
- 36 Caputo F, Domenicali M, Bernardi M. Diagnosis and treatment of alcohol use disorder in patients with end-stage alcoholic liver disease. Hepatology 2019; 70 (01) 410-417
- 37 Dom G, Wojnar M, Crunelle CL. et al. Assessing and treating alcohol relapse risk in liver transplantation candidates. Alcohol Alcohol 2015; 50 (02) 164-172
- 38 Lanthier N, Stärkel P. Treatment of severe alcoholic hepatitis: past, present and future. Eur J Clin Invest 2017; 47 (07) 531-539
- 39 Louvet A, Naveau S, Abdelnour M. et al. The Lille model: a new tool for therapeutic strategy in patients with severe alcoholic hepatitis treated with steroids. Hepatology 2007; 45 (06) 1348-1354
- 40 Thursz MR, Richardson P, Allison M. et al; STOPAH Trial. Prednisolone or pentoxifylline for alcoholic hepatitis. N Engl J Med 2015; 372 (17) 1619-1628
- 41 Nguyen-Khac E, Thevenot T, Piquet MA. et al; AAH-NAC Study Group. Glucocorticoids plus N-acetylcysteine in severe alcoholic hepatitis. N Engl J Med 2011; 365 (19) 1781-1789
- 42 Singal AK, Kamath PS, Gores GJ, Shah VH. Alcoholic hepatitis: current challenges and future directions. Clin Gastroenterol Hepatol 2014; 12 (04) 555-564 , quiz e31–e32
- 43 Mathurin P, Abdelnour M, Ramond MJ. et al. Early change in bilirubin levels is an important prognostic factor in severe alcoholic hepatitis treated with prednisolone. Hepatology 2003; 38 (06) 1363-1369
- 44 Mathurin P, O'Grady J, Carithers RL. et al. Corticosteroids improve short-term survival in patients with severe alcoholic hepatitis: meta-analysis of individual patient data. Gut 2011; 60 (02) 255-260
- 45 Freyssinet MA, Mosnier JF, Feray C. et al. Bilirubin evolution before corticosteroid has a major prognostic value in severe alcoholic hepatitis. Hepatology 2012; 56: 963A
- 46 Louvet A, Wartel F, Castel H. et al. Infection in patients with severe alcoholic hepatitis treated with steroids: early response to therapy is the key factor. Gastroenterology 2009; 137 (02) 541-548
- 47 Maras JS, Das S, Sharma S. et al. Baseline urine metabolic phenotype in patients with severe alcoholic hepatitis and its association with outcome. Hepatol Commun 2018; 2 (06) 628-643
- 48 Sukriti S, Maras JS, Bihari C. et al. Microvesicles in hepatic and peripheral vein can predict nonresponse to corticosteroid therapy in severe alcoholic hepatitis. Aliment Pharmacol Ther 2018; 47 (08) 1151-1161
- 49 Heyworth CM, Vallance SJ, Whetton AD, Dexter TM. The biochemistry and biology of the myeloid haemopoietic cell growth factors. J Cell Sci Suppl 1990; 13: 57-74
- 50 Handman E, Burgess AW. Stimulation by granulocyte-macrophage colony-stimulating factor of Leishmania tropica killing by macrophages. J Immunol 1979; 122 (03) 1134-1137
- 51 Hamilton JA, Stanley ER, Burgess AW, Shadduck RK. Stimulation of macrophage plasminogen activator activity by colony-stimulating factors. J Cell Physiol 1980; 103 (03) 435-445
- 52 Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 1989; 339 (6219): 27-30
- 53 Welte K, Bonilla MA, Gillio AP. et al. Recombinant human granulocyte colony-stimulating factor. Effects on hematopoiesis in normal and cyclophosphamide-treated primates. J Exp Med 1987; 165 (04) 941-948
- 54 Wells JA, de Vos AM. Hematopoietic receptor complexes. Annu Rev Biochem 1996; 65: 609-634
- 55 Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G. Filgrastim (r-metHuG-CSF): the first 10 years. Blood 1996; 88 (06) 1907-1929
- 56 Hoffman R, Benz EJ, Silberstein LE, Heslop H, Anastasi J, Weitz J. Hematology: Basic Principles and Practice. 7th edition.. Philadelphia, PA: Elsevier Health Sciences; 2018
- 57 Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood 1991; 78 (11) 2791-2808
- 58 Arai K, Yokota T, Miyajima A, Arai N, Lee F. Molecular biology of T-cell-derived lymphokines: a model system for proliferation and differentiation of hemopoietic cells. BioEssays 1986; 5 (04) 166-171
- 59 Cesaro S, Chinello P, De Silvestro G. et al. Granulocyte transfusions from G-CSF-stimulated donors for the treatment of severe infections in neutropenic pediatric patients with onco-hematological diseases. Support Care Cancer 2003; 11 (02) 101-106
- 60 Nagata S. Gene structure and function of granulocyte colony-stimulating factor. BioEssays 1989; 10 (04) 113-117
- 61 Begley CG, Lopez AF, Nicola NA. et al. Purified colony-stimulating factors enhance the survival of human neutrophils and eosinophils in vitro: a rapid and sensitive microassay for colony-stimulating factors. Blood 1986; 68 (01) 162-166
- 62 Bendall LJ, Bradstock KFG-CSF. G-CSF: From granulopoietic stimulant to bone marrow stem cell mobilizing agent. Cytokine Growth Factor Rev 2014; 25 (04) 355-367
- 63 Shi X, DeLucia AL, Bao J, Zhang P. Alcohol abuse and disorder of granulopoiesis. Pharmacol Ther 2019; 198: 206-219
- 64 Zhang P, Welsh DA, Siggins II RW. et al. Acute alcohol intoxication inhibits the lineage- c-kit+ Sca-1+ cell response to Escherichia coli bacteremia. J Immunol 2009; 182 (03) 1568-1576
- 65 Zhang P, Bagby GJ, Happel KI, Summer WR, Nelson S. Pulmonary host defenses and alcohol. Front Biosci 2002; 7: d1314-d1330
- 66 Szabo G, Mandrekar P. A recent perspective on alcohol, immunity, and host defense. Alcohol Clin Exp Res 2009; 33 (02) 220-232
- 67 Jong GM, Hsiue TR, Chen CR, Chang HY, Chen CW. Rapidly fatal outcome of bacteremic Klebsiella pneumoniae pneumonia in alcoholics. Chest 1995; 107 (01) 214-217
- 68 Perlino CA, Rimland D. Alcoholism, leukopenia, and pneumococcal sepsis. Am Rev Respir Dis 1985; 132 (04) 757-760
- 69 Karakike E, Moreno C, Gustot T. Infections in severe alcoholic hepatitis. Ann Gastroenterol 2017; 30 (02) 152-160
- 70 Bruns T, Zimmermann HW, Stallmach A. Risk factors and outcome of bacterial infections in cirrhosis. World J Gastroenterol 2014; 20 (10) 2542-2554
- 71 Mhaskar R, Clark OA, Lyman G, Engel Ayer Botrel T, Morganti Paladini L, Djulbegovic B. Colony-stimulating factors for chemotherapy-induced febrile neutropenia. Cochrane Database Syst Rev 2014; (10) CD003039
- 72 Wasmuth HE, Kunz D, Yagmur E. et al. Patients with acute on chronic liver failure display “sepsis-like” immune paralysis. J Hepatol 2005; 42 (02) 195-201
- 73 Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002; 196 (12) 1627-1638
- 74 Tsapogas P, Mooney CJ, Brown G, Rolink A. The cytokine Flt3-ligand in normal and malignant hematopoiesis. Int J Mol Sci 2017; 18 (06) 1115
- 75 Sumpter TL, Abe M, Tokita D, Thomson AW. Dendritic cells, the liver, and transplantation. Hepatology 2007; 46 (06) 2021-2031
- 76 Castellaneta A, Di Leo A, Francavilla R. et al. Functional modification of CD11c+ liver dendritic cells during liver regeneration after partial hepatectomy in mice. Hepatology 2006; 43 (04) 807-816
- 77 Khanam A, Trehanpati N, Garg V. et al. Altered frequencies of dendritic cells and IFN-γ-secreting T cells with granulocyte colony-stimulating factor (G-CSF) therapy in acute-on- chronic liver failure. Liver Int 2014; 34 (04) 505-513
- 78 Hamou C, Callaghan MJ, Thangarajah H. et al. Mesenchymal stem cells can participate in ischemic neovascularization. Plast Reconstr Surg 2009; 123 (02) 45S-55S
- 79 Kucia MJ, Wysoczynski M, Wu W, Zuba-Surma EK, Ratajczak J, Ratajczak MZ. Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells 2008; 26 (08) 2083-2092
- 80 Liu F, Poursine-Laurent J, Link DC. Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 2000; 95 (10) 3025-3031
- 81 Yannaki E, Athanasiou E, Xagorari A. et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol 2005; 33 (01) 108-119
- 82 Bihari C, Anand L, Rooge S. et al. Bone marrow stem cells and their niche components are adversely affected in advanced cirrhosis of the liver. Hepatology 2016; 64 (04) 1273-1288
- 83 Anand L, Bihari C, Kedarisetty CK. et al. Early cirrhosis and a preserved bone marrow niche favour regenerative response to growth factors in decompensated cirrhosis. Liver Int 2019; 39 (01) 115-126
- 84 Theocharis SE, Papadimitriou LJ, Retsou ZP, Margeli AP, Ninos SS, Papadimitriou JD. Granulocyte-colony stimulating factor administration ameliorates liver regeneration in animal model of fulminant hepatic failure and encephalopathy. Dig Dis Sci 2003; 48 (09) 1797-1803
- 85 Piscaglia AC, Shupe TD, Oh SH, Gasbarrini A, Petersen BE. Granulocyte-colony stimulating factor promotes liver repair and induces oval cell migration and proliferation in rats. Gastroenterology 2007; 133 (02) 619-631
- 86 Garg V, Garg H, Khan A. et al. Granulocyte colony-stimulating factor mobilizes CD34(+) cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology 2012; 142 (03) 505-512.e1
- 87 Singh V, Sharma AK, Narasimhan RL, Bhalla A, Sharma N, Sharma R. Granulocyte colony-stimulating factor in severe alcoholic hepatitis: a randomized pilot study. Am J Gastroenterol 2014; 109 (09) 1417-1423
- 88 Singh V, Keisham A, Bhalla A. et al. Efficacy of Granulocyte colony-stimulating factor and N-acetyl cysteine therapies in patients with severe alcoholic hepatitis. Clin Gastroenterol Hepatol 2018; 16 (10) 1650-1656.e2
- 89 Shasthry SM, Sharma MK, Shasthry V, Pande A, Sarin SK. Efficacy of Granulocyte colony-stimulating factor in the management of steroid – nonresponsive severe alcoholic hepatitis: a double blind randomized controlled trial. Hepatology 2019; 70 (03) 802-811
- 90 Setia A, Rai R. Effect of G-CSF on mortality and complications viz. sepsis, encephalopathy, HRS and GI bleed in severe alcoholic hepatitis – a randomized controlled study. J Clin Exp Hepatol 2016;
- 91 Kedarisetty CK, Anand L, Bhardwaj A. et al. Combination of granulocyte colony-stimulating factor and erythropoietin improves outcomes of patients with decompensated cirrhosis. Gastroenterology 2015; 148 (07) 1362-70.e7
- 92 Prajapati R, Arora A, Sharma P, Bansal N, Singla V, Kumar A. Granulocyte colony-stimulating factor improves survival of patients with decompensated cirrhosis: a randomized-controlled trial. Eur J Gastroenterol Hepatol 2017; 29 (04) 448-455
- 93 Spahr L, Chalandon Y, Terraz S. et al. Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial. PLoS One 2013; 8 (01) e53719
- 94 Newsome PN, Fox R, King AL. et al. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol Hepatol 2018; 3 (01) 25-36
- 95 Lieber SR, Rice JP, Lucey MR, Bataller R. Controversies in clinical trials for alcoholic hepatitis. J Hepatol 2018; 68 (03) 586-592
- 96 Gameiro J, Agapito Fonseca J, Jorge S, Lopes JA. Acute kidney injury definition and diagnosis: a narrative review. J Clin Med 2018; 7 (10) 307
- 97 Athreya BH. Is macrophage activation syndrome a new entity?. Clin Exp Rheumatol 2002; 20 (02) 121-123
- 98 Henter JI, Horne A, Aricó M. et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 2007; 48 (02) 124-131
- 99 Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol 2019; 10: 119