Subscribe to RSS
DOI: 10.1055/s-0040-1719899
Acyclic Quaternary Carbon Stereocenters through Transition-Metal-Catalyzed Enantioselective Functionalization of Unsaturated Hydrocarbons
This work was supported by the National Natural Science Foundation of China (Grant No. 22022104 and No. 91856107).
Abstract
Acyclic quaternary carbon stereocenters occur frequently in natural products, bioactive molecules, and pharmaceutical compounds. Construction of a carbon stereogenic center attached to four different carbons with defined spatial arrangement is a daunting challenge in asymmetric catalysis. Significant efforts have been directed towards the stereoselective construction of such acyclic quaternary carbon stereocenters. In particular, catalytic generation of acyclic quaternary carbon stereocenters through functionalization of unsaturated hydrocarbons is an extremely attractive approach because unsaturated hydrocarbons are easily accessible both in industry and in organic synthesis. In this short review, we summarize the recent advances achieved in this research area, with the aim to inspire future development.
1 Introduction
2 Acyclic Quaternary Carbon Stereocenters through Functionalization of Allenes
3 Acyclic Quaternary Carbon Stereocenters through Functionalization of Dienes
4 Acyclic Quaternary Carbon Stereocenters through Functionalization of Mono-alkenes
5 Acyclic Quaternary Carbon Stereocenters through Functionalization of Alkynes
6 Summary and Outlook
Key words
acyclic quaternary carbon stereocenter - transition metal catalysis - unsaturated hydrocarbon - asymmetric catalysis - alkene - alkyne - allenePublication History
Received: 03 December 2021
Accepted after revision: 03 January 2022
Article published online:
01 March 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Stockdale TP, Williams CM. Chem. Soc. Rev. 2015; 44: 7737
- 1b Newman DJ, Cragg GM. J. Nat. Prod. 2016; 79: 629
- 1c Ling T, Rivas F. Tetrahedron 2016; 72: 6729
- 2a Top 200 drugs of 2011: Bartholow M. Pharmacy Times 2012; 78: 48-51
- 2b Poster: Top 200 Pharmaceuticals by Retail Sales in 2020; see (accessed Feb 9, 2022): https://njardarson.lab.arizona.edu/content/top-pharmaceuticals-poster
- 3a Corey EJ, Guzman-Perez A. Angew. Chem. Int. Ed. 1998; 37: 388
- 3b Christoffers J, Mann A. Angew. Chem. Int. Ed. 2001; 40: 4591
- 3c Trost BM, Jiang C. Synthesis 2006; 369
- 3d Das JP, Marek I. Chem. Commun. 2011; 47: 4593
- 3e Quasdorf KW, Overman LE. Nature 2014; 516: 181
- 3f Liu Y, Han S.-J, Liu W.-B, Stoltz BM. Acc. Chem. Res. 2015; 48: 740
- 3g Zeng X.-P, Cao Z.-Y, Wang Y.-H, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
- 3h Ping Y, Li Y, Zhu J, Kong W. Angew. Chem. Int. Ed. 2019; 58: 1562
- 3i Pierrot D, Marek I. Angew. Chem. Int. Ed. 2020; 59: 36
- 4a Marek I, Minko Y, Pasco M, Mejuch T, Gilboa N, Chechik H, Das JP. J. Am. Chem. Soc. 2014; 136: 2682
- 4b Feng J, Holmes M, Krische MJ. Chem. Rev. 2017; 117: 12564
- 5a Johnson J. Chem. Eng. News 2017; 95: 15
- 5b U.S. Energy Information Administration. International Energy Outlook 2017. U.S. Energy Information Administration; Washington D.C.: 2017. https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf
- 5c Ning Y, Ohwada T, Chen F.-E. Green Synth. Catal. 2021; 2: 247
- 6a Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL. Chem. Rev. 2008; 108: 2824
- 6b Zheng K, Liu X, Feng X. Chem. Rev. 2018; 118: 7586
- 6c Vargová D, Némethová I, Plevová K, Šebesta R. ACS Catal. 2019; 9: 3104
- 6d Reznikov AN, Klimochkin YN. Synthesis 2020; 52: 781
- 7 Ballesteros A, Morán-Poladura P, González JM. Chem. Commun. 2016; 52: 2905
- 8 Fernández-Casado J, Nelson R, Mascareñas JL, López F. Chem. Commun. 2016; 52: 2909
- 9 Nicholls LD. M, Wennemers H. Chem. Eur. J. 2021; 27: 17559
- 10 Zhou H, Wang Y, Zhang L, Cai M, Luo S. J. Am. Chem. Soc. 2017; 139: 3631
- 11 Beck TM, Breit B. Angew. Chem. Int. Ed. 2017; 56: 1903
- 12 Bora PP, Sun G.-J, Zheng W.-F, Kang Q. Chin. J. Chem. 2018; 36: 20
- 13 Holmes M, Nguyen KD, Schwartz LA, Luong T, Krische MJ. J. Am. Chem. Soc. 2017; 139: 8114
- 14 Schwartz LA, Holmes M, Brito GA, Goncalves TP, Richardson J, Ruble JC, Huang KW, Krische MJ. J. Am. Chem. Soc. 2019; 141: 2087
- 15 Xu G, Fu B, Zhao H, Li Y, Zhang G, Wang Y, Xiong T, Zhang Q. Chem. Sci. 2019; 10: 1802
- 16 Sun Y, Zhou Y, Shi Y, del Pozo J, Torker S, Hoveyda AH. J. Am. Chem. Soc. 2019; 141: 12087
- 17 Yuan Y, Zhang X, Qian H, Ma S. Chem. Sci. 2020; 11: 9115
- 18 Feng S, Buchwald SL. J. Am. Chem. Soc. 2021; 143: 4935
- 19 Qiu J, Gao S, Li C, Zhang L, Wang Z, Wang X, Ding K. Chem. Eur. J. 2019; 25: 13874
- 20 Ye Y, Kevlishvili I, Feng S, Liu P, Buchwald SL. J. Am. Chem. Soc. 2020; 142: 10550
- 21 Han J, Zhou W, Zhang P.-C, Wang H, Zhang R, Wu H.-H, Zhang J. ACS Catal. 2019; 9: 6890
- 22 Pozo JD, Zhang S, Romiti F, Xu S, Conger RP, Hoveyda AH. J. Am. Chem. Soc. 2020; 142: 18200
- 23 Xiang M, Pfaffinger DE, Krische MJ. Chem. Eur. J. 2021; 27: 13107
- 24 Nguyen KD, Herkommer D, Krische MJ. J. Am. Chem. Soc. 2016; 138: 14210
- 25 Chen XW, Zhu L, Gui YY, Jing K, Jiang YX, Bo ZY, Lan Y, Li J, Yu DG. J. Am. Chem. Soc. 2019; 141: 18825
- 26 Feng J.-J, Xu Y, Oestreich M. Chem. Sci. 2019; 10: 9679
- 27 Adamson NJ, Park S, Zhou P, Nguyen AL, Malcolmson SJ. Org. Lett. 2020; 22: 2032
- 28 Adamson NJ, Wilbur KC. E, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 2761
- 29 Yu R, Xing Y, Fang X. Org. Lett. 2021; 23: 930
- 30 Yu R, Rajasekar S, Fang X. Angew. Chem. Int. Ed. 2020; 59: 21436
- 31 Shi W.-J, Zhang Q, Xie J.-H, Zhu S.-F, Hou G.-H, Zhou Q.-L. J. Am. Chem. Soc. 2006; 128: 2780
- 32 Zhang Q, Zhu S.-F, Cai Y, Wang L.-X, Zhou Q.-L. Sci. China Chem. 2010; 53: 1899
- 33 Zhang A, RajanBabu TV. J. Am. Chem. Soc. 2006; 128: 5620
- 34 Cheng F, Lu W, Huang W, Wen L, Li M, Meng F. Chem. Sci. 2018; 9: 4992
- 35 Gong T.-J, Yu S.-H, Li K, Su W, Lu X, Xiao B, Fu Y. Chem. Asian J. 2017; 12: 2884
- 36 Bergmann AM, Dorn SK, Smith KB, Logan KM, Brown MK. Angew. Chem. Int. Ed. 2019; 58: 1719
- 37 Lin J.-S, Li T.-T, Liu J.-R, Jiao G.-Y, Gu Q.-S, Cheng J.-T, Guo Y.-L, Hong X, Liu X.-Y. J. Am. Chem. Soc. 2019; 141: 1074
- 38 Kawashima S, Aikawa K, Mikami K. Eur. J. Org. Chem. 2016; 2016: 3166
- 39 Wu L, Wang F, Chen P, Liu G. J. Am. Chem. Soc. 2019; 141: 1887
- 40 Zhang SL, Zhang WW, Li BJ. J. Am. Chem. Soc. 2021; 143: 9639
- 41 Wang ZX, Li BJ. J. Am. Chem. Soc. 2019; 141: 9312
- 42 Mei T.-S, Patel HH, Sigman MS. Nature 2014; 508: 340
- 43 Ross SP, Rahman AA, Sigman MS. J. Am. Chem. Soc. 2020; 142: 10516
- 44 Patel HH, Sigman MS. J. Am. Chem. Soc. 2016; 138: 14226
- 45 Chen Z.-M, Nervig CS, DeLuca RJ, Sigman MS. Angew. Chem. Int. Ed. 2017; 56: 6651
- 46 Zhang C, Santiago CB, Crawford JM, Sigman MS. J. Am. Chem. Soc. 2015; 137: 15668
- 47 Cruz FA, Dong VM. J. Am. Chem. Soc. 2017; 139: 1029
- 48 Su Y.-L, Li L.-L, Zhou X.-L, Dai Z.-Y, Wang P.-S, Gong L.-Z. Org. Lett. 2018; 20: 2403
- 49a Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
- 49b Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 49c Chen J, Lu Z. Org. Chem. Front. 2018; 5: 260
- 49d Obligacion JV, Chirik PJ. Nat. Rev. Chem. 2018; 2: 15
- 49e Alig L, Fritz M, Schneider S. Chem. Rev. 2019; 119: 2681
- 49f Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 49g Irrgang T, Kempe R. Chem. Rev. 2019; 119: 2524
- 49h Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
- 49i Reed-Berendt BG, Polidano K, Morrill LC. Org. Biomol. Chem. 2019; 17: 1595
- 49j Wang Y, Wang M, Li Y, Liu Q. Chem 2021; 7: 1180
- 50 Zhou F, Zhu L, Pan BW, Shi Y, Liu YL, Zhou J. Chem. Sci. 2020; 11: 9341
- 51 Kim Y, Li C.-J. Green Synth. Catal. 2020; 1: 1