Subscribe to RSS
DOI: 10.1055/s-0040-1720139
Visible-Light-Induced Photoredox Construction of Trifluoromethylated Quaternary All-Carbon Centers and Tertiary Alcohols via C(sp3)–Si Bond Cleavage
This work is supported by the National Natural Science Foundation of China (NSFC) (22471063), the Natural Science Foundation of Henan Province (242300421351, 222102310562) and the Henan Postdoctoral Science Foundation (202103087). We also acknowledge financial support from the Henan Key Laboratory of Organic Functional Molecules and Drug Innovation.

Abstract
The construction of trifluoromethylated quaternary carbon centers and tertiary alcohols is realized by organo-photoredox catalysis. The process proceeds via visible-light-induced C(sp3)–Si bond cleavage for the generation of α-trifluoromethylated benzyl radicals, which are readily trapped by electron-deficient alkenes with excellent regioselectivity for the construction of trifluoromethylated quaternary all-carbon centers. The α-difluoromethyl counterparts are also suitable for this radical conjugate addition. Furthermore, the in situ oxidation of these α-trifluoromethylated radicals with O2 from air affords tertiary alcohols in high yields, which extends the Fleming–Tamao reaction to tertiary carbon systems.
Key words
visible-light-induced - trifluoromethylated quaternary carbon centers - tertiary alcohols - C(sp3)–Si bond cleavage - transition-metal-freeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720139.
- Supporting Information
- CIF File
Publication History
Received: 26 July 2024
Accepted after revision: 13 September 2024
Article published online:
10 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed. Wiley-VCH; Weinheim: 2013
- 1b Ni CF, Hu MY, Hu JB. Chem. Rev. 2015; 115: 765
- 1c Meanwell NA. J. Med. Chem. 2018; 61: 5822
- 1d Mei HB, Remete AM, Zou YP, Moriwaki H, Fustero S, Kiss L, Soloshonok VA, Han JL. Chin. Chem. Lett. 2020; 31: 2401
- 1e Johnson BM, Shu Y.-Z, Zhuo X, Meanwell NA. J. Med. Chem. 2020; 63: 6315
- 2a Nie J, Guo HC, Cahard D, Ma JA. Chem. Rev. 2011; 111: 455
- 2b Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
- 2c Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
- 2d Alonso C, Marigorta EM, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
- 2e Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
- 2f Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
- 2g Qing FL, Liu XY, Ma JA, Shen QL, Song QL, Tang PP. CCS Chem. 2022; 4: 2518
- 2h Hirano K. Synthesis 2022; 54: 3708
- 3a Chu LL, Qing FL. J. Am. Chem. Soc. 2010; 132: 7262
- 3b Hu M, Ni C, Hu J. J. Am. Chem. Soc. 2012; 134: 15257
- 3c Bai DC, Wang XL, Zheng GF, Li XW. Angew. Chem. Int. Ed. 2018; 57: 6633
- 3d Gao CF, Zhou Y, Ma H, Zhang Y, Nie J, Zhang FG, Ma JA. CCS Chem. 2022; 4: 3693
- 3e Liu J, Hao J, Shen QL. Chin. J. Org. Chem. 2023; 43: 1517
- 3f Liang HM, Wang Q, Zhou X, Zhang RY, Zhou M, Wei J, Ni CF, Hu JB. Angew. Chem. Int. Ed. 2024; 63: e202401091
- 4a Liang Y, Fu GC. J. Am. Chem. Soc. 2015; 137: 9523
- 4b Gao X, Xiao YL, Wan X, Zhang X. Angew. Chem. Int. Ed. 2018; 57: 3187
- 4c Huang W, Hu M, Wan X, Shen Q. J. Am. Chem. Soc. 2019; 141: 11446
- 4d Lin TY, Pan Z, Tu YS, Zhu S, Wu HH, Liu Y, Li ZM, Zhang JL. Angew. Chem. Int. Ed. 2020; 59: 22957
- 4e Jiang C, Wang L, Zhang H, Chen P, Guo YL, Liu G. Chem 2020; 6: 2407
- 4f Min Y, Sheng J, Yu JL, Ni SX, Ma G, Gong H, Wang XS. Angew. Chem. Int. Ed. 2021; 60: 9947
- 4g Jiang XH, Tang PP. Chin. J. Org. Chem. 2021; 41: 2525
- 4h Hu M, Tan BB, Ge SZ. J. Am. Chem. Soc. 2022; 144: 15333
- 4i Zhu C, Zhang H, Liu Q, Chen K, Liu ZY, Feng C. ACS Catal. 2022; 12: 9410
- 4j Xu P, Fan W, Chen P, Liu G. J. Am. Chem. Soc. 2022; 144: 13468
- 4k Wu BB, Xu J, Bian KJ, Gao Q, Wang XS. J. Am. Chem. Soc. 2022; 144: 6543
- 4l Chen JY, Bai DC, Guo XL, Wang YY, Li XW. Chin. Chem. Lett. 2022; 33, 5056
- 4m Li YZ, Rao N, An L, Wan XL, Zhang YX, Zhang XG. Nat. Commun. 2022; 13: 5539
- 4n Lin D, Chen Y, Dong Z, Pei P, Ji H, Tai L, Chen LA. CCS Chem. 2023; 5: 1386
- 4o Wang R, Gao L, Zhou C, Zhang X. Chin. J. Org. Chem. 2023; 43: 1136
- 4p Liu SP, Yang Y, Song QM, Liu ZH, Lu Y, Wang ZJ, Sivaguru P, Bi XH. Nat. Chem. 2024; 16: 988
- 4q Wu F, Li X, Chang JB, Bai DC. Chin. Chem. Lett. 2024; 35: 109155
- 4r Wu F, Chang JB, Bai DC. Org. Lett. 2024; 26: 4953
- 4s Lu SY, Hu ZH, Wang D, Xu T. Angew. Chem. Int. Ed. 2024; 63: e202406064
- 5a Wang SF, Wang WG. Chin. J. Org. Chem. 2020; 40: 1901
- 5b Früh N, Togni A. Angew. Chem. Int. Ed. 2014; 53: 10813
- 5c Woźniak Ł, Murphy JJ, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 5678
- 5d Granados A, Rivilla I, Cossío FP, Vallribera A. Chem. Eur. J. 2019; 25: 8214
- 5e Calvo R, Comas-Vives A, Togni A, Katayev D. Angew. Chem. Int. Ed. 2019; 58: 1447
- 6a Deng YP, He JJ, Cao S, Qian XH. Chin. Chem. Lett. 2022; 33: 2363
- 6b Kawai H, Okusu S, Tokunaga E, Sato H, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2012; 51: 4959
- 6c Kawai H, Yuan Z, Kitayama T, Tokunaga E, Shibata N. Angew. Chem. Int. Ed. 2013; 52: 5575
- 6d Gao JR, Wu H, Xiang B, Yu W.-B, Han L, Jia Y.-X. J. Am. Chem. Soc. 2013; 135: 2983
- 6e Kwiatkowski P, Cholewiak A, Kasztelan A. Org. Lett. 2014; 16: 5930
- 6f Ye J.-H, Song L, Zhou W.-J, Ju T, Yin Z.-B, Yan S.-S, Zhang Z, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2016; 55: 10022
- 6g Sanz-Marco A, Blay G, Vila C, Pedro JR. Org. Lett. 2016; 18: 3538
- 6h Ibáñez I, Kaneko M, Kamei Y, Tsutsumi R, Yamanaka M, Akiyama T. ACS Catal. 2019; 9: 6903
- 7a Trost BM, Debien L. J. Am. Chem. Soc. 2015; 137: 11606
- 7b Xu B, Zhang Z.-M, Liu B, Xu S, Zhou L.-J, Zhang J. Chem. Commun. 2017; 53: 8152
- 7c Rabasa-Alcañiz F, Torres J, Sánchez-Roselló M, Tejero T, Merino P, Fustero S, del Pozo C. Adv. Synth. Catal. 2017; 359: 3752
- 7d Xu S, Zhang Z.-M, Xu B, Liu B, Liu Y, Zhang J. J. Am. Chem. Soc. 2018; 140: 2272
- 7e Xu S, Liu B, Zhang Z.-M, Xu B, Zhang J. Chin. J. Chem. 2018; 36: 421
- 7f Bai X, Wu C, Ge S, Lu Y. Angew. Chem. Int. Ed. 2020; 59: 2764
- 8a Tsuchida K, Senda Y, Nakajima K, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 9728
- 8b Punna N, Harada K, Shibata N. Chem. Commun. 2018; 54: 7171
- 8c Terashima K, Kawasaki-Takasuka T, Agou T, Kubota T, Yamazaki T. Chem. Commun. 2020; 56: 3031
- 8d Sun YT, Zhu DX, Rao XF, Xu MH. Org. Chem. Front. 2020; 7: 340
- 8e Zhang YL, Tanabe Y, Kuriyama S, Sakata K, Nishibayashi Y. Nat. Commun. 2023; 14: 859
- 9a Li XJ, Chen D, Gu HR, Lin XF. Chem. Commun. 2014; 50: 7538
- 9b Neves-Garcia T, Vélez A, Martínez-Ilarduya JM, Espinet P. Chem. Commun. 2018; 54: 11809
- 9c Gan XC, Zhang Q, Jia XS, Yin L. Org. Lett. 2018; 20: 1070
- 10a Stephenson CR. J, Yoon TP, MacMillan DW. C. Visible Light Photocatalysis in Organic Chemistry . Wiley-VCH; Weinheim: 2018
- 10b Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
- 10c Narayanam JM, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 10d Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 10e Zhao Y, Lv Y, Xia W. Chem. Rec. 2019; 19: 424
- 10f Wei Y, Zhou Q.-Q, Tan F, Lu L.-Q, Xiao W.-J. Synthesis 2019; 51: 3021
- 10g Jiang Y, Yin Y, Jiang Z. Chin. J. Org. Chem. 2024; 44: 1733
- 11a Espelt LR, McPherson IS, Wiensch EM, Yoon TP. J. Am. Chem. Soc. 2015; 137: 2452
- 11b Silvi M, Verrier C, Rey YP, Buzzetti L, Melchiorre P. Nat. Chem. 2017; 9: 868
- 11c Khatun N, Kim MJ, Woo SK. Org. Lett. 2018; 20: 6239
- 11d Uygur M, Danelzika T, Mancheño OG. Chem. Commun. 2019; 55: 2980
- 11e Liu RF, Chia S, Goh Y, Cheo H, Fan B, Li RF, Zhou R, Wu J. Eur. J. Org. Chem. 2020; 10: 1459
- 11f Dong X, Li QY, Yoon TP. Org. Lett. 2021; 23: 5703
- 12a Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
- 12b Zheng S, Chen Z, Hu Y, Xi X, Liao Z, Li W, Yuan W. Angew. Chem. Int. Ed. 2020; 59: 17910
- 12c Dong WZ, Badir SO, Zhang X, Molander GA. Org. Lett. 2021; 23: 4250
- 12d Zheng S, Wang W, Yuan W. J. Am. Chem. Soc. 2022; 144: 17776
- 12e Wang WL, Yan XY, Ye F, Zheng SL, Huang GP, Yuan WM. J. Am. Chem. Soc. 2023; 145: 23385
- 13a Hayamizu T, Ikeda M, Maeda H, Mizuno K. Org. Lett. 2001; 3: 1277
- 13b Montanaro S, Ravelli D, Merli D, Fagnoni M, Albini A. Org. Lett. 2012; 14: 4218
- 13c Jouffroy M, Primer DN, Molander GA. J. Am. Chem. Soc. 2016; 138: 475
- 13d Jackl MK, Legnani L, Morandi B, Bode JW. Org. Lett. 2017; 19: 4696
- 13e Li Q, Li X, Ling YF, Liu JX, Jun Y. ACS Catal. 2023; 13: 6879
- 14a Bai DC, Wu F, Chang LN, Wang MM, Wu H, Chang JB. Angew. Chem. Int. Ed. 2022; 61: e202114918
- 14b Bai DC, Zhong KB, Chang LN, Qiao Y, Wu F, Xu GQ, Chang JB. Nat. Commun. 2024; 15: 6360
- 15a Bai DC, Guo XL, Wang XH, Xu WJ, Cheng RS, Wei DH, Lan Y, Chang JB. Nat. Commun. 2024; 15: 2833
- 15b Bai DC, Guo YY, Ma DD, Guo XL, Wu H. Org. Lett. 2023; 25: 533
- 16a Tamao K, Akita M, Kumada M. J. Organomet. Chem. 1983; 254: 13
- 16b Magar SS, Fuchs PL. Tetrahedron Lett. 1991; 32: 7513
For selected reviews, see:
For selected examples, see:
For selected examples, see:
For a selected review, see:
For selected examples, see:
For a selected review, see:
For selected examples, see:
For selected reviews, see:
For selected examples, see:
For a selected review, see:
For selected examples, see: