Subscribe to RSS
DOI: 10.1055/s-0040-1721081
Pathogenesis of Congenital Malformations: Possible Role of Oxidative Stress
Abstract
Objective Congenital anomalies are important causes of morbidity and mortality in children. Oxidative stress (OS) is involved in the physiopathology of pregnancy-related congenital malformations. This review summarizes the role of OS in the pathogenesis of congenital malformations; in particular, its purpose is to describe how OS influences the development of heart congenital malformations, oesophageal atresia, biliary atresia, diaphragmatic hernia, and autosomal dominant polycystic kidney disease.
Study Design Systematic review of previous studies about the role of OS in pregnancy and its possible effects in developing of congenital malformations. One electronic database (PubMed) was searched and reference lists were checked.
Results An imbalance between the production of reactive oxygen species (ROS) and antioxidant defense can occur early in pregnancy and continue in the postnatal life, producing OS. It may destroy the signaling pathways needed for a correct embryogenesis leading to birth defects. In fact, cell functions, especially during embryogenesis, needs specific signaling pathways to regulate the development. These pathways are sensitive to both endogenous and exogenous factors; therefore, they can produce structural alterations of the developing fetus.
Conclusion Because OS plays a significant role in pathogenesis of congenital malformations, studies should be developed in order to better define their OS mechanisms and the beneficial effects of supplemental therapeutic strategies.
Key Points
-
Oxidative stress is involved in the pathogenesis of congenital malformations.
-
Heart malformations, oesophageal atresia, biliary atresia, diaphragmatic hernia, and autosomal dominant polycystic kidney are analyzed.
-
A knowledge of pathomechanism of OS-related congenital malformations could be useful to prevent them.
Publication History
Received: 07 April 2020
Accepted: 25 September 2020
Article published online:
09 November 2020
© 2020. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Marseglia L, D'Angelo G, Manti S. et al. Oxidative stress-mediated aging during the fetal and perinatal periods. Oxid Med Cell Longev 2014; 2014: 358375
- 2 Hansen JM, Go YM, Jones DP. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 2006; 46: 215-234
- 3 Jones DP. Redefining oxidative stress. Antioxid Redox Signal 2006; 8 (9-10): 1865-1879
- 4 Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 2010; 48 (06) 749-762
- 5 Jones DP. Disruption of mitochondrial redox circuitry in oxidative stress. Chem Biol Interact 2006; 163 (1-2): 38-53
- 6 Vento M, Escobar J, Cernada M, Escrig R, Aguar M. The use and misuse of oxygen during the neonatal period. Clin Perinatol 2012; 39 (01) 165-176
- 7 Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive oxygen species: physiological and physiopathological effects on synaptic plasticity. J Exp Neurosci 2016; 10 (Suppl. 01) 23-48
- 8 Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A. et al. Oxygen and oxidative stress in the perinatal period. Redox Biol 2017; 12: 674-681
- 9 Ozsurekci Y, Aykac K. Oxidative stress related deseases in newborns. Oxid Med Cell Longev 2016; 2016: 2768365
- 10 Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008; 4 (02) 89-96
- 11 Lowe FJ, Luettich K, Gregg EO. Lung cancer biomarkers for the assessment of modified risk tobacco products: an oxidative stress perspective. Biomarkers 2013; 18 (03) 183-195
- 12 Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001; 54 (03) 176-186
- 13 Hansson SR, Nääv Å, Erlandsson L. Oxidative stress in preeclampsia and the role of free fetal hemoglobin. Front Physiol 2015; 5: 516
- 14 Wells PG, McCallum GP, Chen CS. et al. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 2009; 108 (01) 4-18
- 15 Mutinati M, Pantaleo M, Roncetti M, Piccinno M, Rizzo A, Sciorsci RL. Oxidative stress in neonatology: a review. Reprod Domest Anim 2014; 49 (01) 7-16
- 16 D'Angelo G, Marseglia L, Granese R. et al. Different concentration of human cord blood HMGB1 according to delivery and labour: a pilot study. Cytokine 2018; 108: 53-56
- 17 D'Angelo G, Granese R, Marseglia L. et al. High mobility group box 1 and markers of oxidative stress in human cord blood. Pediatr Int (Roma) 2019; 61 (03) 264-270
- 18 Shoji H, Koletzko B. Oxidative stress and antioxidant protection in the perinatal period. Curr Opin Clin Nutr Metab Care 2007; 10 (03) 324-328
- 19 Perrimon N, Pitsouli C, Shilo BZ. Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol 2012; 4 (08) a005975
- 20 Yoshida M, Ishigaki K, Nagai T, Chikyu M, Pursel VG. Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biol Reprod 1993; 49 (01) 89-94
- 21 Goldman MB, Missmer S, Barberi RL. Infertility. In: Goldman MB, Hatch MC. ed. Women and Health. San Diego Academy Press; 2000: 196-214
- 22 Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol 2013; 1: 244-257
- 23 Maltepe E, Saugstad OD. Oxygen in health and disease: regulation of oxygen homeostasis: clinical implications. Pediatr Res 2009; 65 (03) 261-268
- 24 Wu F, Tian FJ, Lin Y. Oxidative stress in placenta: health and diseases. BioMed Res Int 2015; 2015: 293271
- 25 New DA, Coppola PT. Effects of different oxygen concentrations on the development of rat embryos in culture. J Reprod Fertil 1970; 21 (01) 109-118
- 26 Morriss G. Growing embryos in vitro. Nature 1979; 278 (5703): 402
- 27 Chen EY, Fujinaga M, Giaccia AJ. Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development. Teratology 1999; 60 (04) 215-225
- 28 Fait V, Sela S, Ophir E. et al. Hyperemesis gravidarum is associated with oxidative stress. Am J Perinatol 2002; 19 (02) 93-98
- 29 Holthe MR, Staff AC, Berge LN, Lyberg T. Leukocyte adhesion molecules and reactive oxygen species in preeclampsia. Obstet Gynecol 2004; 103 (5 Pt 1): 913-922
- 30 Diamant S, Kissilevitz R, Diamant Y. Lipid peroxidation system in human placental tissue: general properties and the influence of gestational age. Biol Reprod 1980; 23 (04) 776-781
- 31 Little RE, Gladen BC. Levels of lipid peroxides in uncomplicated pregnancy: a review of the literature. Reprod Toxicol 1999; 13 (05) 347-352
- 32 Wang YP, Walsh SW, Guo JD, Zhang JY. Maternal levels of prostacyclin, thromboxane, vitamin E, and lipid peroxides throughout normal pregnancy. Am J Obstet Gynecol 1991; 165 (6 Pt 1): 1690-1694
- 33 Jauniaux E, Watson A, Burton G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks' gestation. Am J Obstet Gynecol 2001; 184 (05) 998-1003
- 34 Hustin J, Schaaps JP. Echographic [corrected] and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol 1987; 157 (01) 162-168
- 35 Burton GJ, Jauniaux E, Watson AL. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol 1999; 181 (03) 718-724
- 36 Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol 2000; 157 (06) 2111-2122
- 37 Burton GJ, Hempstock J, Jauniaux E. Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod Biomed Online 2003; 6 (01) 84-96
- 38 Rodríguez-Rodríguez P, Ramiro-Cortijo D, Reyes-Hernández CG, López de Pablo AL, González MC, Arribas SM. Implication of oxidative stress in fetal programming of cardiovascular disease. Front Physiol 2018; 9: 602
- 39 Gao L, Mann GE. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res 2009; 82 (01) 9-20
- 40 Calzada C, Coulon L, Halimi D. et al. In vitro glycoxidized low-density lipoproteins and low-density lipoproteins isolated from type 2 diabetic patients activate platelets via p38 mitogen-activated protein kinase. J Clin Endocrinol Metab 2007; 92 (05) 1961-1964
- 41 Zangen SW, Yaffe P, Shechtman S, Zangen DH, Ornoy A. The role of reactive oxygen species in diabetes-induced anomalies in embryos of Cohen diabetic rats. Int J Exp Diabetes Res 2002; 3 (04) 247-255
- 42 Damasceno DC, Volpato GT, de Mattos Paranhos Calderon I, Cunha Rudge MV. Oxidative stress and diabetes in pregnant rats. Anim Reprod Sci 2002; 72 (3-4): 235-244
- 43 Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (Lond) 2007; 113 (01) 1-13
- 44 Dennery PA. Oxidative stress in development: nature or nurture?. Free Radic Biol Med 2010; 49 (07) 1147-1151
- 45 Azam S, Jouvet N, Jilani A. et al. Human glyceraldehyde-3-phosphate dehydrogenase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1. J Biol Chem 2008; 283 (45) 30632-30641
- 46 Hennig B, Hammock BD, Slim R, Toborek M, Saraswathi V, Robertson LW. PCB-induced oxidative stress in endothelial cells: modulation by nutrients. Int J Hyg Environ Health 2002; 205 (1-2): 95-102
- 47 Jirsová S, Masata J, Jech L, Zvárová J. Effect of polychlorinated biphenyls (PCBs) and 1,1,1-trichloro-2,2,-bis (4-chlorophenyl)-ethane (DDT) in follicular fluid on the results of in vitro fertilization-embryo transfer (IVF-ET) programs. Fertil Steril 2010; 93 (06) 1831-1836
- 48 Samarawickrema N, Pathmeswaran A, Wickremasinghe R. et al. Fetal effects of environmental exposure of pregnant women to organophosphorus compounds in a rural farming community in Sri Lanka. Clin Toxicol (Phila) 2008; 46 (06) 489-495
- 49 Ruder EH, Hartman TJ, Goldman MB. Impact of oxidative stress on female fertility. Curr Opin Obstet Gynecol 2009; 21 (03) 219-222
- 50 Malorni W, Straface E, Matarrese P. et al. Redox state and gender differences in vascular smooth muscle cells. FEBS Lett 2008; 582 (05) 635-642
- 51 Schlisser AE, Yan J, Hales BF. Teratogen-induced oxidative stress targets glyceraldehyde-3-phosphate dehydrogenase in the organogenesis stage mouse embryo. Toxicol Sci 2010; 118 (02) 686-695
- 52 Wells PG, McCallum GP, Chen CS. et al. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 2009; 108 (01) 4-18
- 53 Sandal G, Uras N, Gokmen T, Oguz SS, Erdeve O, Dilmen U. Assessment of oxidant/antioxidant system in newborns and their breast milks. J Matern Fetal Neonatal Med 2013; 26 (05) 540-543
- 54 Loeken MR. Free radicals and birth defects. J Matern Fetal Neonatal Med 2004; 15 (01) 6-14
- 55 Melek M, Demir H, Bilici S. et al. Oxidative stress and antioxidant enzyme activities in newborns with oesophageal atresia and their mothers. J Int Med Res 2012; 40 (01) 249-257
- 56 Yuan Y, Zhang L, Jin L. et al. Markers of macromolecular oxidative damage in maternal serum and risk of neural tube defects in offspring. Free Radic Biol Med 2015; 80: 27-32
- 57 D'Angelo G, Marseglia L, Granese R. et al. Different concentration of human cord blood HMGB1 according to delivery and labour: a pilot study. Cytokine 2018; 108: 53-56
- 58 Pietryga M, Dydowicz P, Toboła K. et al. Selected oxidative stress biomarkers in antenatal diagnosis as 11-14 gestational weeks. Free Radic Biol Med 2017; 108: 517-523
- 59 Repetto M, Semprine J, Boveris A. Lipid peroxidation: chemical mechanism, biological implications and analytical determination. 2012;
- 60 Mukhopadhyay B, Gongopadhyay AN, Rani A, Gavel R, Mishra SP. Free radicals and antioxidants status in neonates with congenital malformation. J Indian Assoc Pediatr Surg 2015; 20 (04) 179-183
- 61 Stark Z, Patel N, Clarnette T, Moody A. Triad of tracheoesophageal fistula-esophageal atresia, pulmonary hypoplasia, and duodenal atresia. J Pediatr Surg 2007; 42 (06) 1146-1148
- 62 Possögel AK, Diez-Pardo JA, Morales C, Navarro C, Tovar JA. Embryology of esophageal atresia in the adriamycin rat model. J Pediatr Surg 1998; 33 (04) 606-612
- 63 Ioannides AS, Chaudhry B, Henderson DJ, Spitz L, Copp AJ. Dorsoventral patterning in oesophageal atresia with tracheo-oesophageal fistula: evidence from a new mouse model. J Pediatr Surg 2002; 37 (02) 185-191
- 64 Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39 (12) 1890-1900
- 65 Crisera CA, Connelly PR, Marmureanu AR. et al. Esophageal atresia with tracheoesophageal fistula: suggested mechanism in faulty organogenesis. J Pediatr Surg 1999; 34 (01) 204-208
- 66 Nascimben F, Peri FM, Impellizzeri P. et al. Special Issue: Focus On Pediatric Cardiology. Role of oxidative stress in the pathogenesis of congenital cardiopathies. J Biol Regul Homeost Agents 2020; 34 (04, Suppl 2): 85-90
- 67 Porcaro F, Valfré L, Aufiero LR. et al. Respiratory problems in children with esophageal atresia and tracheoesophageal fistula. Ital J Pediatr 2017; 43 (01) 77
- 68 Marseglia L, Manti S, D'Angelo G. et al. Gastroesophageal reflux and congenital gastrointestinal malformations. World J Gastroenterol 2015; 21 (28) 8508-8515
- 69 van Mastrigt E, de Jongste JC, Pijnenburg MW. The analysis of volatile organic compounds in exhaled breath and biomarkers in exhaled breath condensate in children - clinical tools or scientific toys?. Clin Exp Allergy 2015; 45 (07) 1170-1188
- 70 Soyer T, Soyer OU, Birben E, Kısa U, Kalaycı O, Cakmak M. Pepsin levels and oxidative stress markers in exhaled breath condensate of patients with gastroesophageal reflux disease. J Pediatr Surg 2013; 48 (11) 2247-2250
- 71 Matés JM, Pérez-Gómez C, Olalla L, Segura JM, Blanca M. Allergy to drugs: antioxidant enzymic activities, lipid peroxidation and protein oxidative damage in human blood. Cell Biochem Funct 2000; 18 (02) 77-84
- 72 Bernstein D, Behrman RE, Kliegman RE. et al. Epidemiology and genetic basis of congenital heart disease. Nelson Textbook of Pediatrics. 2004: 1499-1502
- 73 Vollset SE, Refsum H, Irgens LM. et al. Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine study. Am J Clin Nutr 2000; 71 (04) 962-968
- 74 Molin DG, Roest PA, Nordstrand H. et al. Disturbed morphogenesis of cardiac outflow tract and increased rate of aortic arch anomalies in the offspring of diabetic rats. Birth Defects Res A Clin Mol Teratol 2004; 70 (12) 927-938
- 75 Yang P, Reece EA, Wang F, Gabbay-Benziv R. Decoding the oxidative stress hypothesis in diabetic embryopathy through proapoptotic kinase signaling. Am J Obstet Gynecol 2015; 212 (05) 569-579
- 76 Sokol RJ, Mack C, Narkewicz MR, Karrer FM. Pathogenesis and outcome of biliary atresia: current concepts. J Pediatr Gastroenterol Nutr 2003; 37 (01) 4-21
- 77 Hartley JL, Davenport M, Kelly DA. Biliary atresia. Lancet 2009; 374 (9702): 1704-1713
- 78 Simán CM, Gittenberger-De Groot AC, Wisse B, Eriksson UJ. Malformations in offspring of diabetic rats: morphometric analysis of neural crest-derived organs and effects of maternal vitamin E treatment. Teratology 2000; 61 (05) 355-367
- 79 Pogribny IP, Beland FA. DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci 2009; 66 (14) 2249-2261
- 80 Wang J, Xu J, Xia M. et al. Correlation between hepatic oxidative damage and clinical severity and mitochondrial gene sequencing results in biliary atresia. Hepatol Res 2019; 49 (06) 695-704
- 81 Moores CJ, Fenech M, O'Callaghan NJ. Telomere dynamics: the influence of folate and DNA methylation. Ann NY Acad Sci 2011; 1229: 76-88
- 82 Tovar JA. Congenital diaphragmatic hernia. Orphanet J Rare Dis 2012; 7: 1
- 83 Kool H, Mous D, Tibboel D, de Klein A, Rottier RJ. Pulmonary vascular development goes awry in congenital lung abnormalities. Birth Defects Res C Embryo Today 2014; 102 (04) 343-358
- 84 Rosanna DP, Salvatore C. Reactive oxygen species, inflammation, and lung diseases. Curr Pharm Des 2012; 18 (26) 3889-3900
- 85 Amanso AM, Griendling KK. Differential roles of NADPH oxidases in vascular physiology and pathophysiology. Front Biosci (Schol Ed) 2012; 4: 1044-1064
- 86 Montezano AC, Touyz RM. Molecular mechanisms of hypertension--reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol 2012; 28 (03) 288-295
- 87 Dingemann J, Doi T, Ruttenstock E, Puri P. Abnormal platelet-derived growth factor signaling accounting for lung hypoplasia in experimental congenital diaphragmatic hernia. J Pediatr Surg 2010; 45 (10) 1989-1994
- 88 DeMarco VG, Habibi J, Whaley-Connell AT. et al. Oxidative stress contributes to pulmonary hypertension in the transgenic (mRen2)27 rat. Am J Physiol Heart Circ Physiol 2008; 294 (06) H2659-H2668
- 89 Förstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 2008; 5 (06) 338-349
- 90 Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86 (05) 494-501
- 91 Seta F, Rahmani M, Turner PV, Funk CD. Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline. PLoS One 2011; 6 (08) e23439
- 92 Afolayan AJ, Eis A, Teng RJ. et al. Decreases in manganese superoxide dismutase expression and activity contribute to oxidative stress in persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 2012; 303 (10) L870-L879
- 93 Aggarwal S, Gross CM, Sharma S, Fineman JR, Black SM. Reactive oxygen species in pulmonary vascular remodeling. Compr Physiol 2013; 3 (03) 1011-1034
- 94 Mei CL, Xue C, Yu SQ. et al. Executive summary: clinical practice guideline for autosomal dominant polycystic kidney disease in China. Kidney Dis (Basel) 2020; 6 (03) 144-149
- 95 Oberg BP, McMenamin E, Lucas FL. et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 2004; 65 (03) 1009-1016
- 96 Andries A, Daenen K, Jouret F, Bammens B, Mekahli D, Van Schepdael A. Oxidative stress in autosomal dominant polycystic kidney disease: player and/or early predictor for disease progression?. Pediatr Nephrol 2019; 34 (06) 993-1008
- 97 Cowley Jr BD, Ricardo SD, Nagao S, Diamond JR. Increased renal expression of monocyte chemoattractant protein-1 and osteopontin in ADPKD in rats. Kidney Int 2001; 60 (06) 2087-2096
- 98 Herbelin A, Ureña P, Nguyen AT, Zingraff J, Descamps-Latscha B. Elevated circulating levels of interleukin-6 in patients with chronic renal failure. Kidney Int 1991; 39 (05) 954-960
- 99 Toborek M, Wasik T, Drózdz M, Klin M, Magner-Wróbel K, Kopieczna-Grzebieniak E. Effect of hemodialysis on lipid peroxidation and antioxidant system in patients with chronic renal failure. Metabolism 1992; 41 (11) 1229-1232
- 100 Lucchi L, Banni S, Botti B. et al. Conjugated diene fatty acids in patients with chronic renal failure: evidence of increased lipid peroxidation?. Nephron 1993; 65 (03) 401-409
- 101 Al-Nimri MA, Komers R, Oyama TT, Subramanya AR, Lindsley JN, Anderson S. Endothelial-derived vasoactive mediators in polycystic kidney disease. Kidney Int 2003; 63 (05) 1776-1784
- 102 Merta M, Reiterová J, Rysavá R. et al. Role of endothelin and nitric oxide in the pathogenesis of arterial hypertension in autosomal dominant polycystic kidney disease. Physiol Res 2003; 52 (04) 433-437
- 103 Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet 2007; 369 (9569): 1287-1301
- 104 Laforgia N, Di Mauro A, Favia Guarnieri G. et al. The Role of Oxidative Stress in the Pathomechanism of Congenital Malformations. Hindawi Oxidative Medicine and Cellular Longevity. 2018: 12
- 105 Avula S, Parikh S, Demarest S, Kurz J, Gropman A. Treatment of mitochondrial disorders. Curr Treat Options Neurol 2014; 16 (06) 292