Klin Monbl Augenheilkd 2015; 232(09): 1061-1068
DOI: 10.1055/s-0041-103806
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Neuerungen in der retinalen Bildgebung

News in Retinal Imaging
R. Werkmeister
1   Zentrum für Medizinische Physik und Biomedizinische Technik, Medizinische Universität Wien, Österreich
,
D. Schmidl
1   Zentrum für Medizinische Physik und Biomedizinische Technik, Medizinische Universität Wien, Österreich
2   Universitätsklinik für Klinische Pharmakologie, Medizinische Universität Wien, Österreich
,
G. Garhöfer
2   Universitätsklinik für Klinische Pharmakologie, Medizinische Universität Wien, Österreich
,
L. Schmetterer
1   Zentrum für Medizinische Physik und Biomedizinische Technik, Medizinische Universität Wien, Österreich
2   Universitätsklinik für Klinische Pharmakologie, Medizinische Universität Wien, Österreich
› Author Affiliations
Further Information

Publication History

eingereicht 26 June 2015

akzeptiert 08 July 2015

Publication Date:
15 September 2015 (online)

Zusammenfassung

Neue Entwicklungen der retinalen Bildgebung haben die Ophthalmologie in den letzten Jahren revolutioniert. Insbesondere die optische Kohärenztomografie (OCT) eröffnete neue Möglichkeiten und hat aufgrund ihrer hohen Auflösung und ihrer guten Reproduzierbarkeit ein neues Zeitalter in der ophthalmologischen Bildgebung eingeläutet. Seit der Einführung der Technologie zu Beginn der 1990er-Jahre hat sich das Feld rasch weiterentwickelt. Insbesondere wurden Verbesserungen im Bereich der Auflösung, der Sensitivität und der Aufnahmegeschwindigkeit erreicht. Zusätzlich dazu wurden Erweiterungen in Richtung funktioneller Bildgebung eingeführt. Mit der OCT-Angiografie hat eine erste Anwendung Eingang in die klinische Routine gefunden.

Abstract

New developments in retinal imaging have revolutionised ophthalmology in recent years. In particular, optical coherence tomography (OCT) provides highly resolved and well reproducible images and has rung in a new era in ophthalmological imaging. The technology was introduced in the early 1990 s, and has rapidly developed. There have been improvements in resolution, sensitivity and processing speed. There have also been developments in functional processing. OCT angiography is the first application in routine clinical work.

 
  • Literatur

  • 1 Fercher AF, Hitzenberger CK, Drexler W et al. In vivo optical coherence tomography. Am J Ophthalmol 1993; 116: 113-114
  • 2 Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science 1991; 254: 1178-1181
  • 3 Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 2003; 11: 889-894
  • 4 Drexler W, Liu M, Kumar A et al. Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt 2014; 19: 071412
  • 5 Adhi M, Duker JS. Optical coherence tomography–current and future applications. Curr Opin Ophthalmol 2013; 24: 213-221
  • 6 Povazay B, Hofer B, Torti C et al. Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. Opt Express 2009; 17: 4134-4150
  • 7 Shao L, Xu L, Chen CX et al. Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54: 230-233
  • 8 Sonoda S, Sakamoto T, Yamashita T et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci 2014; 55: 3893-3899
  • 9 Matsuo Y, Sakamoto T, Yamashita T et al. Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Invest Ophthalmol Vis Sci 2013; 54: 7630-7636
  • 10 Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 2009; 147: 811-815
  • 11 Esmaeelpour M, Povazay B, Hermann B et al. Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci 2010; 51: 5260-5266
  • 12 Ikuno Y, Kawaguchi K, Nouchi T et al. Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 2010; 51: 2173-2176
  • 13 Hirata M, Tsujikawa A, Matsumoto A et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 2011; 52: 4971-4978
  • 14 Mrejen S, Spaide RF. Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 2013; 58: 387-429
  • 15 Imamura Y, Fujiwara T, Margolis R et al. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 2009; 29: 1469-1473
  • 16 Iida T, Kishi S, Hagimura N et al. Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy. Retina 1999; 19: 508-512
  • 17 Tittl M, Maar N, Polska E et al. Choroidal hemodynamic changes during isometric exercise in patients with inactive central serous chorioretinopathy. Invest Ophthalmol Vis Sci 2005; 46: 4717-4721
  • 18 Wood A, Binns A, Margrain T et al. Retinal and choroidal thickness in early age-related macular degeneration. Am J Ophthalmol 2011; 152: 1030-1038
  • 19 Switzer jr. DW, Mendonca LS, Saito M et al. Segregation of ophthalmoscopic characteristics according to choroidal thickness in patients with early age-related macular degeneration. Retina 2012; 32: 1265-1271
  • 20 Metelitsina TI, Grunwald JE, DuPont JC et al. Foveolar choroidal circulation and choroidal neovascularization in age-related macular degeneration. Invest Ophthalmol Vis Sci 2008; 49: 358-363
  • 21 Boltz A, Luksch A, Wimpissinger B et al. Choroidal blood flow and progression of age-related macular degeneration in the fellow eye in patients with unilateral choroidal neovascularization. Invest Ophthalmol Vis Sci 2010; 51: 4220-4225
  • 22 Fryczkowski AW, Hodes BL, Walker J. Diabetic choroidal and iris vasculature scanning electron microscopy findings. Int Ophthalmol 1989; 13: 269-279
  • 23 Nagaoka T, Kitaya N, Sugawara R et al. Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol 2004; 88: 1060-1063
  • 24 Esmaeelpour M, Povazay B, Hermann B et al. Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci 2011; 52: 5311-5316
  • 25 Wangsa-Wirawan ND, Linsenmeier RA. Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 2003; 121: 547-557
  • 26 Schmidl D, Garhofer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow – relevance for glaucoma. Exp Eye Res 2011; 93: 141-155
  • 27 Sogawa K, Nagaoka T, Takahashi A et al. Relationship between choroidal thickness and choroidal circulation in healthy young subjects. Am J Ophthalmol 2012; 153: 1129-1132
  • 28 Lee SH, Werner JS, Zawadzki RJ. Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics – optical coherence tomography. Biomed Opt Express 2013; 4: 2508-2517
  • 29 Felberer F, Rechenmacher M, Haindl R et al. Imaging of retinal vasculature using adaptive optics SLO/OCT. Biomed Opt Express 2015; 6: 1407-1418
  • 30 Werkmeister RM, Cherecheanu AP, Garhofer G et al. Imaging of retinal ganglion cells in glaucoma: pitfalls and challenges. Cell Tissue Res 2013; 353: 261-268
  • 31 Wang Q, Tuten WS, Lujan BJ et al. Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. Invest Ophthalmol Vis Sci 2015; 56: 778-786
  • 32 Dubis AM, Cooper RF, Aboshiha J et al. Genotype-dependent variability in residual cone structure in achromatopsia: toward developing metrics for assessing cone health. Invest Ophthalmol Vis Sci 2014; 55: 7303-7311
  • 33 Felberer F, Kroisamer JS, Baumann B et al. Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. Biomed Opt Express 2014; 5: 439-456
  • 34 Zawadzki RJ, Capps AG, Kim DY et al. Progress on Developing Adaptive Optics-Optical Coherence Tomography for Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts. IEEE J Sel Top Quantum Electron 2014; 20 pii 7100912
  • 35 Kocaoglu OP, Ferguson RD, Jonnal RS et al. Adaptive optics optical coherence tomography with dynamic retinal tracking. Biomed Opt Express 2014; 5: 2262-2284
  • 36 Kocaoglu OP, Turner TL, Liu Z et al. Adaptive optics optical coherence tomography at 1 MHz. Biomed Opt Express 2014; 5: 4186-4200
  • 37 Kumar A, Kamali T, Platzer R et al. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT. Biomed Opt Express 2015; 6: 1124-1134
  • 38 Pircher M, Hitzenberger CK, Schmidt-Erfurth U. Polarization sensitive optical coherence tomography in the human eye. Prog Retin Eye Res 2011; 30: 431-451
  • 39 Baumann B, Gotzinger E, Pircher M et al. Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography. J Biomed Opt 2010; 15: 061704
  • 40 Schlanitz FG, Sacu S, Baumann B et al. Identification of drusen characteristics in age-related macular degeneration by polarization-sensitive optical coherence tomography. Am J Ophthalmol 2015; 160: 335-344.e1
  • 41 Ahlers C, Gotzinger E, Pircher M et al. Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51: 2149-2157
  • 42 Leitgeb RA, Werkmeister RM, Blatter C et al. Doppler optical coherence tomography. Prog Retin Eye Res 2014; 41: 26-43
  • 43 Chen ZP, Milner TE, Srinivas S et al. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Optics Letters 1997; 22: 1119-1121
  • 44 Braaf B, Vermeer KA, Vienola KV et al. Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. Opt Express 2012; 20: 20516-20534
  • 45 Blatter C, Klein T, Grajciar B et al. Ultrahigh-speed non-invasive widefield angiography. J Biomed Opt 2012; 17: 070505
  • 46 Jia Y, Bailey ST, Wilson DJ et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 2014; 121: 1435-1444
  • 47 Hammer M, Vilser W, Riemer T et al. Retinal vessel oximetry-calibration, compensation for vessel diameter and fundus pigmentation, and reproducibility. J Biomed Opt 2008; 13: 054015
  • 48 Geirsdottir A, Palsson O, Hardarson SH et al. Retinal vessel oxygen saturation in healthy individuals. Invest Ophthalmol Vis Sci 2012; 53: 5433-5442
  • 49 Liu W, Jiao S, Zhang HF. Accuracy of retinal oximetry: a Monte Carlo investigation. J Biomed Opt 2013; 18: 066003
  • 50 Traustason S, Jensen AS, Arvidsson HS et al. Retinal oxygen saturation in patients with systemic hypoxemia. Invest Ophthalmol Vis Sci 2011; 52: 5064-5067
  • 51 Palkovits S, Lasta M, Boltz A et al. Measurement of retinal oxygen saturation in patients with chronic obstructive pulmonary disease. Invest Ophthalmol Vis Sci 2013; 54: 1008-1013
  • 52 Palkovits S, Told R, Schmidl D et al. Regulation of retinal oxygen metabolism in humans during graded hypoxia. Am J Physiol Heart Circ Physiol 2014; 307: H1412-1418
  • 53 Hardarson SH, Stefansson E. Oxygen saturation in central retinal vein occlusion. Am J Ophthalmol 2010; 150: 871-875
  • 54 Hardarson SH, Stefansson E. Oxygen saturation in branch retinal vein occlusion. Acta Ophthalmol 2012; 90: 466-470
  • 55 Hardarson SH, Stefansson E. Retinal oxygen saturation is altered in diabetic retinopathy. Br J Ophthalmol 2012; 96: 560-563
  • 56 Wanek J, Teng PY, Blair NP et al. Inner retinal oxygen delivery and metabolism under normoxia and hypoxia in rat. Invest Ophthalmol Vis Sci 2013; 54: 5012-5019
  • 57 Song W, Wei Q, Liu W et al. A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Sci Rep 2014; 4: 6525
  • 58 Wang Y, Bower BA, Izatt JA et al. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt 2008; 13: 064003
  • 59 Baumann B, Potsaid B, Kraus MF et al. Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT. Biomed Opt Express 2011; 2: 1539-1552
  • 60 Trasischker W, Werkmeister RM, Zotter S et al. In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography. J Biomed Opt 2013; 18: 116010
  • 61 Doblhoff-Dier V, Schmetterer L, Vilser W et al. Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes. Biomed Opt Express 2014; 5: 630-642
  • 62 Werkmeister RM, Dragostinoff N, Pircher M et al. Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. Opt Lett 2008; 33: 2967-2969
  • 63 Werkmeister RM, Palkovits S, Told R et al. Response of retinal blood flow to systemic hyperoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography. PLoS One 2012; 7: e45876
  • 64 Werkmeister RM, Dragostinoff N, Palkovits S et al. Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53: 6062-6071