Intensivmedizin up2date, Inhaltsverzeichnis Intensivmedizin up2date 2015; 11(04): 293-308DOI: 10.1055/s-0041-103986 Allgemeine Prinzipien der Intensivmedizin © Georg Thieme Verlag KG Stuttgart · New York Therapeutisches Drug Monitoring von Reserveantibiotika Stefanie M. Bode-Böger , Uwe Tröger Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Volltext Referenzen Literatur 1 European Centre for Disease Prevention and Control. Carbapenemase-producing bacteria in Europe: interim results from the European Survey on carbapenemase-producing Enterobacteriaceae (EuSCAPE) project. Stockholm: ECDC Technical Report 2013; 2 Siegmund-Schultze N. Acinetobacter auf dem Vormarsch. Dtsch Arztebl 2015; 112: 5-162 3 Canton R, Akova M, Carmeli Y et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 2012; 18: 413-431 4 Gross AS. Best practice in therapeutic drug monitoring. Br J Clin Pharmacol 1998; 46: 95-99 5 Prescott Jr WA, Gentile AE, Nagel JL et al. Continuous-infusion antipseudomonal Beta-lactam therapy in patients with cystic fibrosis. Pharm Therapeutics 2011; 36: 723-763 6 Le Guellec C, Gaudet ML, Lamanetre S et al. Stability of rifampin in plasma: consequences for therapeutic monitoring and pharmacokinetic studies. Ther Drug Monit 1997; 19: 669-674 7 Roberts JA, Lipman J. Antibacterial dosing in intensive care pharmacokinetics, degree of disease and pharmacodynamics of sepsis. Clin Pharmacokinet 2006; 45: 755-773 8 European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints. See information on Clinical breakpoint tables. Breakpoint table for bacteria. Im Internet: http://www.eucast.org/clinical_breakpoints/ [Stand 18.05.2015] 9 Hanberger H, Svensson E, Nilsson LE et al. Pharmacodynamic effects of meropenem on gram-negative bacteria. Eur J Clin Microbiol Infect Dis 1995; 14: 383-390 10 Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol 2004; 2: 289-300 11 Rybak MJ, Lomaestro BM, Rotschafer JC et al. Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases. Pharmacists. Pharmacotherapy 2009; 29: 1275-1279 12 Nielsen EI, Cars O, Friberg LE. Pharmacokinetic/pharmacodynamics (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward mode-based dose optimization. Antimicrob Agents Chemother 2011; 55: 4619-4630 13 Lodise TP, Patel N, Lomaestro BM et al. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis 2009; 15: 507-514 14 Turnidge J. Pharmacodynamics and dosing of aminoglycosides. Infect Dis Clin North Am 2003; 17: 503-528 15 Udy AA, Roberts JA, Lipman J. Implications of augmented renal clerance in critically ill patients. Nat Rev Nephrol 2011; 7: 539-543 16 Tröger U, Drust A, Martens-Lobenhoffer J et al. Decreased meropenem levels in intensive care patients with augmented renal clearance: benefit of therapeutic drug monitoring. Int J Antimicrob Agents 2012; 40: 370-372 17 Tanev ID, Tröger U, Lohmeier S et al. Einfluss des therapeutischen Drug-Monitorings (TDM) zur Steuerung der Meropenem-Therapie bei Intensivpatienten. EP/02/08. 13. Kongress der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin Innovation trifft Kompetenz 04.–06.12.2013, Leipzig, Abstractband S. 22 18 Plachouras D, Karvanen M, Friberg LE et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother 2009; 53: 3430-3436 19 Strunk AK, Schmidt JJ, Baroke E et al. Single- and multiple-dose pharmacokinetics and total removal of colistin in a patient with acute kidney injury undergoing extended daily dialysis. J Antimicrob Chemother 2014; 69: 2008-2010 20 Bode-Böger SM, Schopp B, Tröger U et al. Intravenous colistin in a patient with serious burns and borderline syndrome: the benefits of therpeutic drug monitoring. Int J Antimicrob Agents 2013; 42: 357-360 21 Tzouvelekis LS, Markogiannakis A, Psichogiou M et al. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an envolving crisis of global dimensions. Clin Microbiol Rev 2012; 25: 682-707 22 Frossard M, Joukhadar C, Erovic BM et al. Distribution and antimicrobial activity of fosfomycin in the intestinal fluid of human soft tissues. Antimicrob Agents Chemother 2000; 44: 2728-2732 23 Patel SS, Balfour JA, Bryson HM. Fosfomycin tromethamine. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy as a single-dose oral treatment for acute uncomplicated lower urinary tract infections. Drugs 1997; 53: 637-656 24 Matzke GR, Aronoff GR, Atkinson AJ et al. Drug dosing consideration in patients with acute and chronic kidney disease – a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2011; 80: 1122-1137 25 Udy AA, Roberts JA, DeWaele JJ et al. Whatʼs behind the failure of emerging antibiotics on the critically ill? Understanding the impact of altered pharmacokinetics and augmented renal clearance. Int J Antimicrob Agents 2012; 39: 455-457 26 Parker S, Lipman J, Koulenti D et al. What is the relevance of fosfomycin pharmacokinetics in the treatment of serious infections in critically ill patients? A systematic review.. Int J Antimicrob Agents 2013; 42: 289-293 27 Perdigao-Neto LV, Oliveira MS, Rizek CF et al. Susceptibility to fosfomycin of multiresistant gram-negative bacteria and performance of different susceptibility testing methods: preparing for clinical use. Antimicrob Agents Chemother 2014; 58: 1763-1767 28 Samonis G, Maraki S, Karageorgopoulos SE et al. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur J Clin Microbiol Infect Dis 2012; 31: 695-701 29 Pfizer AG. Fachinformation Tygacil. Stand Dez. 2014 30 Peleg AY, Adams J, Paterson DL. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother 2007; 51: 2065-2069 31 FDA. FDA Drug Safety Communication: Increased risk of death with TYGACIL compared to other antibiotics used to treat similar infections. 01.09.2010 32 Giamarellou H, Poulakou G. Pharmacokinetic and pharmacodynamic evluation of tigecycline. Expert Opin Drug Metab Toxicol 2011; 7: 1459-1470 33 Korth-Bradley JM, Baird-Bellaire SJ, Patat AA et al. Pharmacokinetics and safety of a single intravenous dose of the antibiotic tigecycline in patients with cirrhosis. J Clin Pharmacol 2011; 51: 93-101 34 Korth-Bradley JM, Troy SM, Matschke K et al. Tigecycline pharmacokinetics in subjects with various degrees of renal function. J Clin Pharmacol 2012; 52: 1379-1387 35 Eyler RF, Mueller BA. Antibiotic dosing in critically ill patients with acute kidney injury. Nat Rev Nephrol 2011; 7: 226-235 36 Binder L, Schwörer H, Hoppe S et al. Pharmacokinetics of meropenem in critically ill patients with severe infections. Ther Drug Monit 2013; 35: 63-70 37 Casu GS, Hites M, Jacobs F et al. Can changes in renal function predict variations in beta-lactam concentrations in septic patients?. Int J Antimicrob Agents 2013; 42: 422-428 38 Roberts JA, Lipman J, Blot S et al. Better outcomes through continuous infusion of time-dependent antibiotics to critically ill patients?. Curr Opin Crit Care 2008; 14: 390-396 39 De Waele JJ, Lipman J, Akova M et al. Risk factors for target non-attainment during empirical treatment with (-lactam antibiotics in critically ill patients. Intensive Care Med 2014; 40: 1340-1351 40 Roberts JA, Webb S, Paterson D et al. A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit Care Med 2009; 37: 2071-2078 41 Lips M, Siller M, Strojil J et al. Pharmacokinetics of imipenem in critically ill patients during empirical treatment of nosocomial pneumonia: a comparison of 0.5-h and 3-h infusions. Int J Antimicrob Agents 2014; 44: 358-362 42 MacGowan A. Revisiting Beta-lactams – PK/PD improves dosing of old antibiotics. Curr Opin Pharmacol 2011; 11: 470-476 43 Shiu J, Wang E, Tejani AM et al. Continuous versus intermittent infusions of antibiotics for the treatment of severe acute infections. Cochrane Database Syst Rev 2013; 3: CD008481 44 Cantón R, Morosini MI. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev 2011; 35: 977-991 45 Li X, Wang L, Zhang XJ et al. Evaluation of meropenem regimens suppressing emergence of resistance in Acinetobacter baumannii with human simulated exposure in an in vitro intravenous-infusion hollow-fiber infection model. Antimicrob Agents Chemother 2014; 58: 6773-6781 46 Daikos GL, Tsaousi S, Tzouvelekis LS et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother 2014; 58: 2322-2328 47 Rafailidis PI, Falagas ME. Options for treating carbapenem-resistant Enterobacteriaceae. Curr Opin Infect Dis 2014; 27: 479-483 48 Tanev ID, Tröger U, Smid J et al. Drug monitoring gesteuerte hochdosierte Antibiotikatherapie zur Behandlung einer schweren Pneumonie mit multiresistenten Acinetobacter baumanii P/02/09. 11. Kongress der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin. Fortschritt und Verantwortung. 30.11.–03.12.2011, Leipzig, Abstractband S. 42 49 Norrby SR. Neurotoxicity of carbapenem antibiotics: consequences for their use in bacterial meningitis. J Antimicrob Chem 2000; 45: 5-7 50 Tanaka A, Takechi K, Watanabe S et al. Comparison of the prevalence of convulsions associated with the use of cefepime and meropenem. Int J Clin Pharm 2013; 35: 683-687