Klin Monbl Augenheilkd 2015; 232(12): 1386-1391
DOI: 10.1055/s-0041-109021
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Diffusionsgewichtete Magnetresonanztomografie und ihre potenziellen Anwendungsmöglichkeiten in der Ophthalmologie

Diffusion Weighted Magnetic Resonance Imaging and its Application in Ophthalmology
T. Lindner
1   Core Facility Multimodale Kleintierbildgebung, Universitätsmedizin Rostock
,
S. Langner
2   Institut für Diagnostische Radiologie und Neuroradiologie, Universitätsmedizin Greifswald
,
K. Paul
3   Berlin Ultrahigh Field Facility (B. U. F. F.), Max-Delbrück-Zentrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, Berlin
,
A. Pohlmann
3   Berlin Ultrahigh Field Facility (B. U. F. F.), Max-Delbrück-Zentrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, Berlin
,
S. Hadlich
2   Institut für Diagnostische Radiologie und Neuroradiologie, Universitätsmedizin Greifswald
,
T. Niendorf
3   Berlin Ultrahigh Field Facility (B. U. F. F.), Max-Delbrück-Zentrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, Berlin
,
A. Jünemann
4   Universitätsaugenklinik, Universitätsmedizin Rostock
,
R. F. Guthoff
4   Universitätsaugenklinik, Universitätsmedizin Rostock
,
O. Stachs
4   Universitätsaugenklinik, Universitätsmedizin Rostock
› Author Affiliations
Further Information

Publication History

eingereicht 22 September 2015

akzeptiert 03 November 2015

Publication Date:
17 December 2015 (online)

Zusammenfassung

Die diffusionsgewichtete Magnetresonanztomografie (DW-MRT oder engl. DWI) ist eine in der klinischen Routine für eine Vielzahl an Fragestellungen etablierte Untersuchungstechnik. DW-MRT basiert auf der Diffusion von Wasser im Körpergewebe bzw. Flüssigkeiten und misst die stochastische Bewegung von Wassermolekülen in selbigem intra- und extrazellulären Raum. Mit diesem Verfahren können sowohl qualitative als auch quantitative Informationen, beispielsweise bez. der Zellularität von Gewebe, gewonnen werden. Dieser Übersichtsartikel stellt die diffusionsgewichtete Magnetresonanztomografie und ihre Anwendungsmöglichkeiten in der ophthalmologischen Bildgebung vor. Ausgehend von den physikalischen Grundlagen werden die technische Umsetzung sowie die Anwendungsmöglichkeiten für ophthalmologische Fragestellungen anhand von Beispielen aus der aktuellen Forschung dargestellt.

Abstract

The value of diffusion-weighted magnet resonance imaging (DWI-MRI) has been demonstrated for an ever growing range of clinical indications. DWI is sensitive to the diffusion of water molecules and probes their random displacement within tissue. DWI provides both qualitative and quantitative information on tissue characteristics, e.g. tissue cellularity. This review provides an overview of diffusion-weighted imaging and its emerging applications in ophthalmology. The basic physics and technical foundations of DWI are introduced. The emerging applications of DWI are surveyed, particularly in diseases of the eye, orbit and optical nerve.

 
  • 1 Mafee MF, Karimi A, Shah J et al. Anatomy and pathology of the eye: role of MR imaging and CT. Neuroimaging Clin N Am 2005; 15: 23-47
  • 2 Sepahdari AR, Kapur R, Aakalu VK et al. Diffusion-weighted imaging of malignant ocular masses: initial results and directions for further study. AJNR Am J Neuroradiol 2012; 33: 314-319
  • 3 Bert RJ, Patz S, Ossiani M et al. High-resolution MR imaging of the human eye 2005. Acad Radiol 2006; 13: 368-378
  • 4 Strenk SA, Strenk LM, Guo S. Magnetic resonance imaging of the anteroposterior position and thickness of the aging, accommodating, phakic, and pseudophakic ciliary muscle. J Cataract Refract Surg 2010; 36: 235-241
  • 5 Mannelli L, Nougaret S, Vargas HA et al. Advances in diffusion-weighted imaging. Radiol Clin North Am 2015; 53: 569-581
  • 6 Schmid-Tannwald C, Reiser MF, Zech CJ. Diffusionsgewichtete Magnetresonanztomographie des Abdomens. Radiologe 2011; 51: 195-204
  • 7 Foti PV, Farina R, Coronella M et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting the response of ocular melanoma to proton beam therapy: initial results. Radiol Med 2015; 120: 526-535
  • 8 Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 1954; 94: 630-638
  • 9 Niendorf T, Dijkhuizen RM, Norris DG et al. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996; 36: 847-857
  • 10 Norris DG, Niendorf T. Interpretation of DW-NMR data: dependence on experimental conditions. NMR Biomed 1995; 8: 280-288
  • 11 Norris DG, Niendorf T, Leibfritz D. Health and infarcted brain tissues studied at short diffusion times: the origins of apparent restriction and the reduction in apparent diffusion coefficient. NMR Biomed 1994; 7: 304-310
  • 12 Norris DG, Niendorf T, Hoehn-Berlage M et al. Incidence of apparent restricted diffusion in three different models of cerebral infarction. Magn Reson Imaging 1994; 12: 1175-1182
  • 13 Niendorf T, Norris DG, Leibfritz D. Detection of apparent restricted diffusion in healthy rat brain at short diffusion times. Magn Reson Med 1994; 32: 672-677
  • 14 Kuhnke M, Langner S, Khaw AV et al. Diffusionsgewichtete MRT – wie viele Diffusionsfaktoren sind notwendig?. Rofo 2012; 184: 303-310
  • 15 Sepahdari AR, Politi LS, Aakalu VK et al. Diffusion-weighted imaging of orbital masses: multi-institutional data support a 2-ADC threshold model to categorize lesions as benign, malignant, or indeterminate. AJNR Am J Neuroradiol 2014; 35: 170-175
  • 16 de Graaf P, Pouwels PJ, Rodjan F et al. Single-shot turbo spin-echo diffusion-weighted imaging for retinoblastoma: initial experience. AJNR Am J Neuroradiol 2012; 33: 110-118
  • 17 Fatima Z, Ichikawa T, Ishigame K et al. Orbital masses: the usefulness of diffusion-weighted imaging in lesion categorization. Clin Neuroradiol 2014; 24: 129-134
  • 18 Erb-Eigner K, Willerding G, Taupitz M et al. Diffusion-weighted imaging of ocular melanoma. Invest Radiol 2013; 48: 702-707
  • 19 Paul K, Graessl A, Rieger J et al. Diffusion-sensitized ophthalmic magnetic resonance imaging free of geometric distortion at 3.0 and 7.0 T: a feasibility study in healthy subjects and patients with intraocular masses. Invest Radiol 2015; 50: 309-321
  • 20 Zhang F, Sha Y, Qian J et al. Role of magnetic resonance diffusion-weighted imaging in differentiating lacrimal masses. J Magn Reson Imaging 2014; 40: 641-648
  • 21 Sepahdari AR, Aakalu VK, Kapur R et al. MRI of orbital cellulitis and orbital abscess: the role of diffusion-weighted imaging. AJR Am J Roentgenol 2009; 193: W244-250
  • 22 Kilicarslan R, Alkan A, Ilhan MM et al. Gravesʼ ophthalmopathy: the role of diffusion-weighted imaging in detecting involvement of extraocular muscles in early period of disease. Br J Radiol 2015; 88: 20140677
  • 23 Politi LS, Godi C, Cammarata G et al. Magnetic resonance imaging with diffusion-weighted imaging in the evaluation of thyroid-associated orbitopathy: getting below the tip of the iceberg. Eur Radiol 2014; 24: 1118-1126
  • 24 Viets R, Parsons M, van Stavern G et al. Hyperintense optic nerve heads on diffusion-weighted imaging: a potential imaging sign of papilledema. AJNR Am J Neuroradiol 2013; 34: 1438-1442
  • 25 Backens M. [Basic principles and technique of diffusion-weighted imaging and diffusion tensor imaging]. Radiologe 2015; 55: 762-770
  • 26 Sun H, Wang D, Zhang Q et al. Magnetic resonance diffusion tensor imaging of optic nerve and optic radiation in healthy adults at 3 T. Int J Ophthalmol 2013; 6: 868-872
  • 27 Sidek S, Ramli N, Rahmat K et al. Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation. Eur J Radiol 2014; 83: 1437-1441
  • 28 Niendorf T, Paul K, Graessl A et al. Ophthalmologische Bildgebung mit Ultrahochfeld-Magnetresonanztomografie: technische Innovationen und wegweisende Anwendungen. Klin Monatsbl Augenheilkd 2014; 231: 1187-1195
  • 29 Engelhorn T, Michelson G, Waerntges S et al. Diffusion tensor imaging detects rarefaction of optic radiation in glaucoma patients. Acad Radiol 2011; 18: 764-769
  • 30 Michelson G, Engelhorn T, Warntges S et al. DTI parameters of axonal integrity and demyelination of the optic radiation correlate with glaucoma indices. Graefes Arch Clin Exp Ophthalmol 2013; 251: 243-253
  • 31 El-Rafei A, Engelhorn T, Warntges S et al. Glaucoma classification based on visual pathway analysis using diffusion tensor imaging. Magn Reson Imaging 2013; 31: 1081-1091
  • 32 James JS, Radhakrishnan A, Thomas B et al. Diffusion tensor imaging tractography of Meyerʼs loop in planning resective surgery for drug-resistant temporal lobe epilepsy. Epilepsy Res 2015; 110: 95-104
  • 33 Borius P, Roux F, Valton L et al. Can DTI fiber tracking of the optic radiations predict visual deficit after surgery?. Clin Neurol Neurosurg 2014; 122: 87-91
  • 34 Utting JF, Kozerke S, Luechinger R et al. Feasibility of k–t BLAST for BOLD fMRI with a spin-echo based acquisition at 3 T and 7 T. Invest Radiol 2009; 44: 495-502
  • 35 Niendorf T. On the application of susceptibility-weighted ultra-fast low-angle RARE experiments in functional MR imaging. Magn Reson Med 1999; 41: 1189-1198
  • 36 Jeong H, Dewey BE, Hirtle JA et al. Improved diffusion tensor imaging of the optic nerve using multishot two-dimensional navigated acquisitions. Magn Reson Med 2015; 74: 953-963
  • 37 Walter U, Niendorf T, Graessl A et al. Ultrahigh field magnetic resonance and colour Doppler real-time fusion imaging of the orbit–a hybrid tool for assessment of choroidal melanoma. Eur Radiol 2014; 24: 1112-1117
  • 38 Lindner T, Langner S, Graessl A et al. High spatial resolution in vivo magnetic resonance imaging of the human eye, orbit, nervus opticus and optic nerve sheath at 7.0 Tesla. Exp Eye Res 2014; 125: 89-94
  • 39 Langner S, Krueger P, Lindner T et al. In-vivo-Magnetresonanzmikroskopie des humanen Auges. Klin Monatsbl Augenheilkd 2014; 231: 1016-1022
  • 40 Graessl A, Muhle M, Schwerter M et al. Ophthalmic magnetic resonance imaging at 7 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses. Invest Radiol 2014; 49: 260-270