Intensivmedizin up2date 2016; 12(02): 111-134
DOI: 10.1055/s-0041-110071
Allgemeine Prinzipien der Intensivmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Säure-Basen-Störungen

Carsten Hafer
Further Information

Publication History

Publication Date:
12 April 2016 (online)

Kernaussagen
  • Säure-Basen-Störungen in der Intensivmedizin sind häufig komplex und bedürfen einer differenzierteren Betrachtung.

  • Die Konzentration der Wasserstoffionen und damit der pH-Wert hängt vom Verhältnis zwischen CO2 und Bikarbonat ab.

  • Schnell zu bestimmende Parameter wie die Anionenlücke und ΔGap sind hilfreich bei differenzialtherapeutischen Entscheidungen.

  • Bei metabolischen Azidosen sollte man zwischen Bikarbonatverlust (hyperchlorämische metabolische Azidose mit normaler Anionenlücke) und Säurezufuhr (metabolische Azidose mit erhöhter Anionenlücke) unterscheiden.

  • Die klinische Manifestation von Säure-Basen-Störungen wird im Wesentlichen von der Dynamik der Entstehung und ihrer Ursache geprägt, weniger von den Zahlenwerten per se.

  • Die Therapie von Säure-Basen-Störungen sollte sich auf die Ursache konzentrieren und insbesondere bei der Bikarbonatgabe damit einhergehende Sekundärveränderungen berücksichtigen.

  • Akute respiratorische Störungen wirken sich aufgrund der erst verzögert einsetzenden renalen Kompensation stärker auf den pH-Wert aus als chronische.

  • Für die Entwöhnung von der Beatmung sollte man bei chronischen respiratorischen Störungen die initiale Bikarbonatkonzentration beachten.

  • Elektrolytveränderungen (Na, K, Cl, ionisiertes Ca) sind eng mit Säure-Basen-Störungen assoziiert und sowohl diagnostisch als auch therapeutisch in den Behandlungsprozess und die Überwachung zu integrieren.

 
  • Literatur

  • 1 Halperin ML, Kamel KS, Goldstein MB. Fluid, electrolyte, and acid-base physiology – a problem-based approach. Philadelphia, PA: Saunders/Elsevier; 2010
  • 2 Kettritz R, Luft FC. Störungen des Säure-Basen-Haushaltes. In: Kuhlmann U, Böhler J, Luft FC, et al., Hrsg. Nephrologie – Pathophysiologie, Klinik, Nierenersatzverfahren. Stuttgart: Thieme; 2015: 277-320
  • 3 Seifter JL. Integration of acid-base and electrolyte disorders. N Engl J Med 2014; 371: 1821-1831
  • 4 Bakker J et al. Veno-arterial carbon dioxide gradient in human septic shock. Chest 1992; 101: 509-515
  • 5 Adrogué HJ et al. Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. N Engl J Med 1989; 320: 1312-1316
  • 6 Treger R et al. Agreement between central venous and arterial blood gas measurements in the intensive care unit. Clin J Am Soc Nephrol 2010; 5: 390-394
  • 7 von Planta M et al. Myocardial acidosis associated with CO2 production during cardiac arrest and resuscitation. Circulation 1989; 80: 684-692
  • 8 Sato Y, Weil MH, Tang W. Tissue hypercarbic acidosis as a marker of acute circulatory failure (shock). Chest 1998; 114: 263-274
  • 9 Kraut JA, Madias NE. Treatment of acute metabolic acidosis: a pathophysiologic approach. Nat Rev Nephrol 2012; 8: 589-601
  • 10 Adrogué HJ, Madias NE. Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med 1981; 71: 456-467
  • 11 Zahler R et al. Lactic acidosis: effect of treatment on intracellular pH and energetics in living rat heart. Am J Physiol 1992; 262: H1572-1578
  • 12 Rehring TF et al. Mechanisms of pH preservation during global ischemia in preconditioned rat heart: roles for PKC and NHE. Am J Physiol 1998; 275: H805-813
  • 13 Grocott MP et al. Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med 2009; 360: 140-149
  • 14 Vichot AA, Rastegar A. Use of anion gap in the evaluation of a patient with metabolic acidosis. Am J Kidney Dis 2014; 64: 653-657
  • 15 Lipnick MS et al. The difference between critical care initiation anion gap and prehospital admission anion gap is predictive of mortality in critical illness. Crit Care Med 2013; 41: 49-59
  • 16 Rastegar A. Use of the DeltaAG/DeltaHCO3− ratio in the diagnosis of mixed acid-base disorders. J Am Soc Nephrol 2007; 18: 2429-2431
  • 17 Goodkin DA, Krishna GG, Narins RG. The role of the anion gap in detecting and managing mixed metabolic acid-base disorders. Clin Endocrinol Metab 1984; 13: 333-349
  • 18 Kraut JA, Madias NE. Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 2010; 6: 274-285
  • 19 Gunnerson KJ et al. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care 2006; 10: R22
  • 20 Nichol AD et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care 2010; 14: R25
  • 21 Stacpoole PW et al. DCA-Lactic Acidosis Study Group. Natural history and course of acquired lactic acidosis in adults. Am J Med 1994; 97: 47-54
  • 22 Wagner A et al. Therapy of severe diabetic ketoacidosis. Zero-mortality under very-low-dose insulin application. Diabetes Care 1999; 22: 674-677
  • 23 Husain FA et al. Serum lactate and base deficit as predictors of mortality and morbidity. Am J Surg 2003; 185: 485-491
  • 24 Derer W et al. Lactate in a laubenpieper. Nephrol Dial Transplant 2005; 20: 2851-2854
  • 25 Friedenberg AS, Brandoff DE, Schiffman FJ. Type B lactic acidosis as a severe metabolic complication in lymphoma and leukemia: a case series from a single institution and literature review. Medicine (Baltimore) 2007; 86: 225-232
  • 26 Didwania A et al. Effect of intravenous lactated Ringerʼs solution infusion on the circulating lactate concentration: Part 3. Results of a prospective, randomized, double-blind, placebo-controlled trial. Crit Care Med 1997; 25: 1851-1854
  • 27 Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med 2013; 369: 1243-1251
  • 28 Gennari FJ. Intravenous fluid therapy: saline versus mixed electrolyte and organic anion solutions. Am J Kidney Dis 2013; 62: 20-22
  • 29 Friesecke S et al. Outcome of severe lactic acidosis associated with metformin accumulation. Crit Care 2010; 14: R226
  • 30 Calello DP et al. Extracorporeal Treatment for Metformin Poisoning: Systematic Review and Recommendations From the Extracorporeal Treatments in Poisoning Workgroup. Crit Care Med 2015; 43: 1716-1730
  • 31 Nguyen HL, Concepcion L. Metformin intoxication requiring dialysis. Hemodial Int 2011; 15 (Suppl. 01) S68-S71
  • 32 Guo PY, Storsley LJ, Finkle SN. Severe lactic acidosis treated with prolonged hemodialysis: recovery after massive overdoses of metformin. Semin Dial 2006; 19: 80-83
  • 33 Seidowsky A et al. Metformin-associated lactic acidosis: a prognostic and therapeutic study. Crit Care Med 2009; 37: 2191-2196
  • 34 Glaser N et al. Risk factors for cerebral edema in children with diabetic ketoacidosis. The Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. N Engl J Med 2001; 344: 264-269
  • 35 Savage MW et al. Joint British Diabetes Societies guideline for the management of diabetic ketoacidosis. Diabet Med 2011; 28: 508-515
  • 36 Kitabchi AE et al. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009; 32: 1335-1343
  • 37 Roberts RJ et al. Incidence of propofol-related infusion syndrome in critically ill adults: a prospective, multicenter study. Crit Care 2009; 13: R169
  • 38 Krajcova A et al. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care 2015; 19: 398
  • 39 Kraut JA, Kurtz I. Toxic alcohol ingestions: clinical features, diagnosis, and management. Clin J Am Soc Nephrol 2008; 3: 208-225
  • 40 Fertel BS, Nelson LS, Goldfarb DS. The underutilization of hemodialysis in patients with salicylate poisoning. Kidney Int 2009; 75: 1349-1353
  • 41 Kamel KS, Halperin ML. Acid-base problems in diabetic ketoacidosis. N Engl J Med 2015; 372: 546-554
  • 42 Huseby JS, Gumprecht DG. Hemodynamic effects of rapid bolus hypertonic sodium Bikarbonate. Chest 1981; 79: 552-554
  • 43 Kraut JA, Kurtz I. Treatment of acute non-anion gap metabolic acidosis. Clinical kidney journal 2015; 8: 93-99
  • 44 Kindgen-Milles D et al. Treatment of metabolic alkalosis during continuous renal replacement therapy with regional citrate anticoagulation. Int J Artif Organs 2008; 31: 363-366
  • 45 Kettritz R. Gastrointestinale Ursachen von metabolischer Alkalose. Nephrologe 2012; 7: 481-489
  • 46 Menitove SM, Goldring RM. Combined ventilator and Bikarbonate strategy in the management of status asthmaticus. Am J Med 1983; 74: 898-901
  • 47 Buysse CM, de Jongste JC, de Hoog M. Life-threatening asthma in children: treatment with sodium Bikarbonate reduces PCO2. Chest 2005; 127: 866-870
  • 48 Hodgkin JE, Soeprono FF, Chan DM. Incidence of metabolic alkalemia in hospitalized patients. Crit Care Med 1980; 8: 725-728
  • 49 Faisy C et al. Effectiveness of acetazolamide for reversal of metabolic alkalosis in weaning COPD patients from mechanical ventilation. Intensive Care Med 2010; 36: 859-863
  • 50 Gulsvik R et al. Acetazolamide improves oxygenation in patients with respiratory failure and metabolic alkalosis. Clin Respir J 2013; 7: 390-396
  • 51 Heming N, Faisy C, Urien S. Population pharmacodynamic model of Bikarbonate response to acetazolamide in mechanically ventilated chronic obstructive pulmonary disease patients. Crit Care 2011; 15: R213
  • 52 Brijker F et al. Discontinuation of furosemide decreases PaCO(2) in patients with COPD. Chest 2002; 121: 377-382
  • 53 Anderson LE, Henrich WL. Alkalemia-associated morbidity and mortality in medical and surgical patients. South Med J 1987; 80: 729-733
  • 54 Palmer BF. Evaluation and treatment of respiratory alkalosis. Am J Kidney Dis 2012; 60: 834-838
  • 55 Mountain RD et al. Acid-base disturbances in acute asthma. Chest 1990; 98: 651-655
  • 56 Lewis L et al. Albuterol administration is commonly associated with increases in serum lactate in patients with asthma treated for acute exacerbation of asthma. Chest 2014; 145: 53-59