Facial Plast Surg 2021; 37(03): 306-316
DOI: 10.1055/s-0041-1722956
Original Research

An Overview of Computational Fluid Dynamics Preoperative Analysis of the Nasal Airway

1   Department of Otorhinolaryngology, Hospital Luz Arrabida, Porto, Portugal
,
Dirk-Jan Menger
2   Department of Otorhinolaringology, University Medical Center, Utrecht, The Netherlands
,
Henrique Cyrne de Carvalho
3   Department of Medicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
,
Jorge Spratley
4   Department of Otorhinolaringology, Faculdade de Medicina da Universidade do Porto, Centro Hospitalar e Universitário S. João and Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), Porto, Portugal
› Author Affiliations

Abstract

Evaluation of the nasal airway is crucial for every patient with symptoms of nasal obstruction as well as for every patient with other nasal symptoms. This assessment of the nasal airway comprises clinical examination together with imaging studies, with the correlation between findings of this evaluation and symptoms reported by the patient being based on the experience of the surgeon. Measuring nasal airway resistance or nasal airflow can provide additional data regarding the nasal airway, but the benefit of these objective measurements is limited due to their lack of correlation with patient-reported evaluation of nasal breathing. Computational fluid dynamics (CFD) has emerged as a valuable tool to assess the nasal airway, as it provides objective measurements that correlate with patient-reported evaluation of nasal breathing. CFD is able to evaluate nasal airflow and measure variables such as heat transfer or nasal wall shear stress, which seem to reflect the activity of the nasal trigeminal sensitive endings that provide sensation of nasal breathing. Furthermore, CFD has the unique capacity of making airway analysis of virtual surgery, predicting airflow changes after trial virtual modifications of the nasal airway. Thereby, CFD can assist the surgeon in deciding surgery and selecting the surgical techniques that better address the features of each specific nose. CFD has thus become a trend in nasal airflow assessment, providing reliable results that have been validated for analyzing airflow in the human nasal cavity. All these features make CFD analysis a mainstay in the armamentarium of the nasal surgeon. CFD analysis may become the gold standard for preoperative assessment of the nasal airway.



Publication History

Article published online:
08 February 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Zhao K, Jiang J. What is normal nasal airflow? A computational study of 22 healthy adults. Int Forum Allergy Rhinol 2014; 4 (06) 435-446
  • 2 Na Y, Chung KS, Chung SK, Kim SK. Effects of single-sided inferior turbinectomy on nasal function and airflow characteristics. Respir Physiol Neurobiol 2012; 180 (2-3): 289-297
  • 3 Kjaergaard T, Cvancarova M, Steinsvåg SK. Relation of nasal air flow to nasal cavity dimensions. Arch Otolaryngol Head Neck Surg 2009; 135 (06) 565-570
  • 4 Singh A, Patel N, Kenyon G, Donaldson G. Is there objective evidence that septal surgery improves nasal airflow?. J Laryngol Otol 2006; 120 (11) 916-920
  • 5 André RF, D'Souza AR, Kunst HP, Vuyk HD. Sub-alar batten grafts as treatment for nasal valve incompetence; description of technique and functional evaluation. Rhinology 2006; 44 (02) 118-122
  • 6 Dinis PB, Haider H. Septoplasty: long-term evaluation of results. Am J Otolaryngol 2002; 23 (02) 85-90
  • 7 Illum P. Septoplasty and compensatory inferior turbinate hypertrophy: long-term results after randomized turbinoplasty. Eur Arch Otorhinolaryngol 1997; 254 (Suppl. 01) S89-S92
  • 8 André RF, Vuyk HD, Ahmed A, Graamans K, Nolst Trenité GJ. Correlation between subjective and objective evaluation of the nasal airway. A systematic review of the highest level of evidence. Clin Otolaryngol 2009; 34 (06) 518-525
  • 9 Barnes ML, White PS, Gardiner Q. Re: Correlation between subjective and objective evaluation of the nasal airway. Clin Otolaryngol 2010; 35 (02) 152-153
  • 10 Eccles R, Doddi NM, Leong S. Re: Correlation between subjective and objective evaluation of the nasal airway. Clin Otolaryngol 2010; 35 (02) 149
  • 11 Hopkins C, Earnshaw J, Roberts D. Re: Correlation between subjective and objective evaluation of the nasal airway - a systematic review of the highest level of evidence. Clin Otolaryngol 2010; 35 (02) 147-148
  • 12 Hopkins C, Earnshaw J, Roberts D. Re: Correlation between subjective and objective evaluation of the nasal airway. A systematic review of the highest level of evidence. Clin Otolaryngol 2010; 35 (04) 337-338
  • 13 Williams J, Kulendra K, Hanif J. Re: Correlation between subjective and objective evaluation of the nasal airway - a systematic review of the highest level of evidence. Clin Otolaryngol 2010; 35 (02) 150-151
  • 14 Nivatvongs W, Earnshaw J, Roberts D, Hopkins C. Re: Correlation between subjective and objective evaluation of the nasal airway. A systematic review of the highest level of evidence. Clin Otolaryngol 2011; 36 (02) 181-182
  • 15 Zhao K, Blacker K, Luo Y, Bryant B, Jiang J. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance. PLoS One 2011; 6 (10) e24618
  • 16 Jones AS, Willatt DJ, Durham LM. Nasal airflow: resistance and sensation. J Laryngol Otol 1989; 103 (10) 909-911
  • 17 Mohan S, Fuller JC, Ford SF, Lindsay RW. Diagnostic and therapeutic management of nasal airway obstruction - advances in diagnosis and treatment. JAMA Facial Plast Surg 2018; 20 (05) 409-418
  • 18 Naito K. Nasal patency: subjective and objective. Am J Rhinol 1989; 3 (02) 93-97
  • 19 Kumlien J, Schiratzki H. Methodological aspects of rhinomanometry. Rhinology 1979; 17 (02) 107-114
  • 20 Watson WT, Roberts JR, Becker AB, Gendreau-Reid LF, Simons FE. Nasal patency in children with allergic rhinitis: correlation of objective and subjective assessments. Ann Allergy Asthma Immunol 1995; 74 (03) 237-240
  • 21 Hirschberg A, Rezek O. Correlation between objective and subjective assessments of nasal patency. ORL J Otorhinolaryngol Relat Spec 1998; 60 (04) 206-211
  • 22 Welch KC, Stankiewicz JA. A contemporary review of endoscopic sinus surgery: techniques, tools, and outcomes. Laryngoscope 2009; 119 (11) 2258-2268
  • 23 Willatt D. The evidence for reducing inferior turbinates. Rhinology 2009; 47 (03) 227-236
  • 24 Lam DJ, James KT, Weaver EM. Comparison of anatomic, physiological, and subjective measures of the nasal airway. Am J Rhinol 2006; 20 (05) 463-470
  • 25 Eccles R, Jones AS. The effect of menthol on nasal resistance to air flow. J Laryngol Otol 1983; 97 (08) 705-709
  • 26 Willatt DJ, Jones AS. The role of the temperature of the nasal lining in the sensation of nasal patency. Clin Otolaryngol Allied Sci 1996; 21 (06) 519-523
  • 27 Sozansky J, Houser SM. The physiological mechanism for sensing nasal airflow: a literature review. Int Forum Allergy Rhinol 2014; 4 (10) 834-838
  • 28 Liu SC, Lu HH, Fan HC. et al. The identification of the TRPM8 channel on primary culture of human nasal epithelial cells and its response to cooling. Medicine (Baltimore) 2017; 96 (31) e7640
  • 29 Sullivan CD, Garcia GJ, Frank-Ito DO, Kimbell JS, Rhee JS. Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction. Otolaryngol Head Neck Surg 2014; 150 (01) 139-147
  • 30 Bailey RS, Casey KP, Pawar SS, Garcia GJ. Correlation of nasal mucosal temperature with subjective nasal patency in healthy individuals. JAMA Facial Plast Surg 2017; 19 (01) 46-52
  • 31 Kimbell JS, Frank DO, Laud P, Garcia GJ, Rhee JS. Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction. J Biomech 2013; 46 (15) 2634-2643
  • 32 Zhao K, Jiang J, Blacker K. et al. Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope 2014; 124 (03) 589-595
  • 33 Tsubone H. Nasal ‘flow’ receptors of the rat. Respir Physiol 1989; 75 (01) 51-64
  • 34 Jones AS, Wight RG, Durham LH. The distribution of thermoreceptors within the nasal cavity. Clin Otolaryngol Allied Sci 1989; 14 (03) 235-239
  • 35 Voets T, Owsianik G, Nilius B. Trpm8. Handb Exp Pharmacol 2007; 179 (179) 329-344
  • 36 Bautista DM, Siemens J, Glazer JM. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007; 448 (7150): 204-208
  • 37 Cauna N, Hinderer KH, Wentges RT. Sensory receptor organs of the human nasal respiratory mucosa. Am J Anat 1969; 124 (02) 187-209
  • 38 Jones AS, Wight RG, Crosher R, Durham LH. Nasal sensation of airflow following blockade of the nasal trigeminal afferents. Clin Otolaryngol Allied Sci 1989; 14 (04) 285-289
  • 39 Lindemann J, Keck T, Scheithauer MO, Leiacker R, Wiesmiller K. Nasal mucosal temperature in relation to nasal airflow as measured by rhinomanometry. Am J Rhinol 2007; 21 (01) 46-49
  • 40 Doorly DJ, Taylor DJ, Schroter RC. Mechanics of airflow in the human nasal airways. Respir Physiol Neurobiol 2008; 163 (1-3): 100-110
  • 41 Doorly DJ, Taylor DJ, Gambaruto AM, Schroter RC, Tolley N. Nasal architecture: form and flow. Philos Trans- Royal Soc, Math Phys Eng Sci 2008; 366 (1879): 3225-3246
  • 42 Lee JH, Na Y, Kim SK, Chung SK. Unsteady flow characteristics through a human nasal airway. Respir Physiol Neurobiol 2010; 172 (03) 136-146
  • 43 Lindemann J, Keck T, Wiesmiller KM, Rettinger G, Brambs HJ, Pless D. Numerical simulation of intranasal air flow and temperature after resection of the turbinates. Rhinology 2005; 43 (01) 24-28
  • 44 Taylor DJ, Doorly DJ, Schroter RC. Inflow boundary profile prescription for numerical simulation of nasal airflow. J R Soc Interface 2010; 7 (44) 515-527
  • 45 Na Y, Kim K, Kim SK, Chung SK. The quantitative effect of an accessory ostium on ventilation of the maxillary sinus. Respir Physiol Neurobiol 2012; 181 (01) 62-73
  • 46 Naftali S, Schroter RC, Shiner RJ, Elad D. Transport phenomena in the human nasal cavity: a computational model. Ann Biomed Eng 1998; 26 (05) 831-839
  • 47 Wang Y, Elghobashi S. On locating the obstruction in the upper airway via numerical simulation. Respir Physiol Neurobiol 2014; 193: 1-10
  • 48 Frank DO, Zanation AM, Dhandha VH. et al. Quantification of airflow into the maxillary sinuses before and after functional endoscopic sinus surgery. Int Forum Allergy Rhinol 2013; 3 (10) 834-840
  • 49 Radulesco T, Meister L, Bouchet G. et al. Functional relevance of computational fluid dynamics in the field of nasal obstruction: a literature review. Clin Otolaryngol 2019; 44 (05) 801-809
  • 50 Wen J, Inthavong K, Tu J, Wang S. Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respir Physiol Neurobiol 2008; 161 (02) 125-135
  • 51 Croce C, Fodil R, Durand M. et al. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Ann Biomed Eng 2006; 34 (06) 997-1007
  • 52 Hörschler I, Meinke M, Schröder W. Numerical simulation of the flow field in a model of the nasal cavity. Comput Fluids 2003; 32: 39-45
  • 53 Subramaniam R, Richardson R, Morgan K. et al. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal Toxicol 1998; 10: 473-502
  • 54 Segal RA, Kepler GM, Kimbell JS. Effects of differences in nasal anatomy on airflow distribution: a comparison of four individuals at rest. Ann Biomed Eng 2008; 36 (11) 1870-1882
  • 55 Weinhold I, Mlynski G. Numerical simulation of airflow in the human nose. Eur Arch Otorhinolaryngol 2004; 261 (08) 452-455
  • 56 Kim DW, Chung SK, Na Y. Numerical study on the air conditioning characteristics of the human nasal cavity. Comput Biol Med 2017; 86: 18-30
  • 57 Leung A, Tsui W, Xu J, Lo J. Nasal airflow simulations in models derived from conebeam and spiral CT scans by using CFD. J Appl Math Mech 2007; 3 (03) 49-61
  • 58 Corley RA, Kabilan S, Kuprat AP. et al. Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human. Toxicol Sci 2012; 128 (02) 500-516
  • 59 Lindemann J, Leiacker R, Rettinger G, Keck T. Nasal mucosal temperature during respiration. Clin Otolaryngol Allied Sci 2002; 27 (03) 135-139
  • 60 Garcia GJ, Bailie N, Martins DA, Kimbell JS. Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. J Appl Physiol (1985) 2007; 103 (03) 1082-1092
  • 61 Tu J, Inthavong K, Ahmadi G. Computational Fluid and Particle Dynamics in the Human Respiratory System. Dordrecht, the Netherlands: Springer Science & Business Media; 2013: 233-317
  • 62 Sidlof P, Zorner S. Computational aeroacoustics of human phonation. EPJ Web Conf 2013; 45: 01085
  • 63 Doorly D, Taylor DJ, Franke P, Schroter RC. Experimental investigation of nasal airflow. Proc Inst Mech Eng H 2008; 222 (04) 439-453
  • 64 Patki A, Frank-Ito DO. Characterizing human nasal airflow physiologic variables by nasal index. Respir Physiol Neurobiol 2016; 232: 66-74
  • 65 Zhao K, Malhotra P, Rosen D, Dalton P, Pribitkin EA. Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection. Anat Rec (Hoboken) 2014; 297 (11) 2187-2195
  • 66 Lindemann J, Keck T, Wiesmiller K. et al. A numerical simulation of intranasal air temperature during inspiration. Laryngoscope 2004; 114 (06) 1037-1041
  • 67 Keck T, Leiacker R, Riechelmann H, Rettinger G. Temperature profile in the nasal cavity. Laryngoscope 2000; 110 (04) 651-654
  • 68 Goodarzi-Ardakani V, Taeibi-Rahni M, Salimi MR, Ahmadi G. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air. Respir Physiol Neurobiol 2016; 223: 49-58
  • 69 Elad D, Naftali S, Rosenfeld M, Wolf M. Physical stresses at the air-wall interface of the human nasal cavity during breathing. J Appl Physiol (1985) 2006; 100 (03) 1003-1010
  • 70 Inthavong K, Shang Y, Tu J. Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity. Respir Physiol Neurobiol 2014; 190: 54-61
  • 71 Brüning JJ, Goubergrits L, Heppt W, Zachow S, Hildebrandt T. Numerical analysis of nasal breathing: a pilot study. Facial Plast Surg 2017; 33 (04) 388-395
  • 72 Even-Tzur N, Kloog Y, Wolf M, Elad D. Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses. Biophys J 2008; 95 (06) 2998-3008
  • 73 Gambaruto A, Doorly D, Yamaguchi T. Wall shear stress and near-wall convective transport: comparisons with vascular remodelling in a peripheral graft anastomosis. J Comput Phys 2010; 229: 5339-5356
  • 74 Tan J, Han D, Wang J. et al. Numerical simulation of normal nasal cavity airflow in Chinese adult: a computational flow dynamics model. Eur Arch Otorhinolaryngol 2012; 269 (03) 881-889
  • 75 Wang Y, Liu Y, Sun X. et al. Numerical analysis of respiratory flow patterns within human upper airway. Acta Mech Sin-PRC 2009; 25: 737-746
  • 76 Elad D, Liebenthal R, Wenig BL, Einav S. Analysis of air flow patterns in the human nose. Med Biol Eng Comput 1993; 31 (06) 585-592
  • 77 Kim SK, Heo GE, Seo A, Na Y, Chung SK. Correlation between nasal airflow characteristics and clinical relevance of nasal septal deviation to nasal airway obstruction. Respir Physiol Neurobiol 2014; 192: 95-101
  • 78 Chen XB, Lee HP, Chong VF, Wang Y. Assessment of septal deviation effects on nasal air flow: a computational fluid dynamics model. Laryngoscope 2009; 119 (09) 1730-1736
  • 79 Chen XB, Leong SC, Lee HP, Chong VF, Wang DY. Aerodynamic effects of inferior turbinate surgery on nasal airflow--a computational fluid dynamics model. Rhinology 2010; 48 (04) 394-400
  • 80 Zhu JH, Lee HP, Lim KM, Lee SJ, Wang Y. Evaluation and comparison of nasal airway flow patterns among three subjects from Caucasian, Chinese and Indian ethnic groups using computational fluid dynamics simulation. Respir Physiol Neurobiol 2011; 175 (01) 62-69
  • 81 Swift D, Proctor D. Access of air to the respiratory tract. In: Brain J, Proctor D, Reid L. eds. Respiratory defense mechanism. New York, NY: Marcel Dekker Inc; 1977: 63-91
  • 82 Zhao K, Scherer PW, Hajiloo SA, Dalton P. Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem Senses 2004; 29 (05) 365-379
  • 83 Keyhani K, Scherer PW, Mozell MM. A numerical model of nasal odorant transport for the analysis of human olfaction. J Theor Biol 1997; 186 (03) 279-301
  • 84 Zhao K, Jiang J, Pribitkin EA. et al. Conductive olfactory losses in chronic rhinosinusitis? A computational fluid dynamics study of 29 patients. Int Forum Allergy Rhinol 2014; 4 (04) 298-308
  • 85 Cannon DE, Frank DO, Kimbell JS, Poetker DM, Rhee JS. Modeling nasal physiology changes due to septal perforations. Otolaryngol Head Neck Surg 2013; 148 (03) 513-518
  • 86 Choi KJ, Jang DW, Ellison MD, Frank-Ito DO. Characterizing airflow profile in the postoperative maxillary sinus by using computational fluid dynamics modeling: a pilot study. Am J Rhinol Allergy 2016; 30 (01) 29-36
  • 87 Abouali O, Keshavarzian E, Farhadi Ghalati P, Faramarzi A, Ahmadi G, Bagheri MH. Micro and nanoparticle deposition in human nasal passage pre and post virtual maxillary sinus endoscopic surgery. Respir Physiol Neurobiol 2012; 181 (03) 335-345
  • 88 Farhadi Ghalati P, Keshavarzian E, Abouali O, Faramarzi A, Tu J, Shakibafard A. Numerical analysis of micro- and nano-particle deposition in a realistic human upper airway. Comput Biol Med 2012; 42 (01) 39-49
  • 89 Chung SK, Jo G, Na Y. Investigation of flow characteristics in regions of nasal polypoid change. Comput Biol Med 2016; 70: 148-156
  • 90 Chen XB, Lee HP, Chong VF, Wang Y. Assessments of nasal bone fracture effects on nasal airflow: a computational fluid dynamics study. Am J Rhinol Allergy 2011; 25 (01) e39-e43
  • 91 Kim SK, Na Y, Kim JI, Chung SK. Patient specific CFD models of nasal airflow: overview of methods and challenges. J Biomech 2013; 46 (02) 299-306
  • 92 Lee HP, Poh HJ, Chong FH, Wang Y. Changes of airflow pattern in inferior turbinate hypertrophy: a computational fluid dynamics model. Am J Rhinol Allergy 2009; 23 (02) 153-158
  • 93 Chen XB, Lee HP, Chong VF, Wang DY. Drug delivery in the nasal cavity after functional endoscopic sinus surgery: a computational fluid dynamics study. J Laryngol Otol 2012; 126 (05) 487-494
  • 94 Inthavong K, Tu J, Ahmadi G. Computational modelling of gas-particle flows with different particle morphology in the human nasal cavity. Int J Multiphas Flow 2009; 1: 57-82
  • 95 Frank-Ito DO, Wofford M, Schroeter JD, Kimbell JS. Influence of mesh density on airflow and particle deposition in sinonasal airway modeling. J Aerosol Med Pulm Drug Deliv 2016; 29 (01) 46-56
  • 96 Frank DO, Kimbell JS, Cannon D, Pawar SS, Rhee JS. Deviated nasal septum hinders intranasal sprays: a computer simulation study. Rhinology 2012; 50 (03) 311-318
  • 97 Frank DO, Kimbell JS, Cannon D, Rhee JS. Computed intranasal spray penetration: comparisons before and after nasal surgery. Int Forum Allergy Rhinol 2013; 3 (01) 48-55
  • 98 Frank DO, Kimbell JS, Pawar S, Rhee JS. Effects of anatomy and particle size on nasal sprays and nebulizers. Otolaryngol Head Neck Surg 2012; 146 (02) 313-319
  • 99 Chen XB, Lee HP, Chong VF, Wang Y. A computational fluid dynamics model for drug delivery in a nasal cavity with inferior turbinate hypertrophy. J Aerosol Med Pulm Drug Deliv 2010; 23 (05) 329-338
  • 100 Inthavong K, Tian Z, Li H. et al. A numerical study of spray particle deposition in a human nasal cavity. Aerosol Sci Technol 2006; 40 (11) 1034-1045
  • 101 Kimbell JS, Segal RA, Asgharian B. et al. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages. J Aerosol Med 2007; 20 (01) 59-74
  • 102 Shang Y, Dong J, Inthavong K, Tu J. Comparative numerical modeling of inhaled micron-sized particle deposition in human and rat nasal cavities. Inhal Toxicol 2015; 27 (13) 694-705
  • 103 Tian ZF, Inthavong K, Tu JY. Deposition of inhaled wood dust in the nasal cavity. Inhal Toxicol 2007; 19 (14) 1155-1165
  • 104 Lindemann J, Brambs HJ, Keck T, Wiesmiller KM, Rettinger G, Pless D. Numerical simulation of intranasal airflow after radical sinus surgery. Am J Otolaryngol 2005; 26 (03) 175-180
  • 105 Zhao K, Dalton P, Yang GC, Scherer PW. Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose. Chem Senses 2006; 31 (02) 107-118
  • 106 Rhee JS, Cannon DE, Frank DO, Kimbell JS. Role of virtual surgery in preoperative planning: assessing the individual components of functional nasal airway surgery. Arch Facial Plast Surg 2012; 14 (05) 354-359
  • 107 Frank-Ito DO, Kimbell JS, Laud P, Garcia GJ, Rhee JS. Predicting postsurgery nasal physiology with computational modeling: current challenges and limitations. Otolaryngol Head Neck Surg 2014; 151 (05) 751-759
  • 108 Shadfar S, Shockley WW, Fleischman GM. et al. Characterization of postoperative changes in nasal airflow using a cadaveric computational fluid dynamics model: supporting the internal nasal valve. JAMA Facial Plast Surg 2014; 16 (05) 319-327
  • 109 Wexler D, Segal R, Kimbell J. Aerodynamic effects of inferior turbinate reduction: computational fluid dynamics simulation. Arch Otolaryngol Head Neck Surg 2005; 131 (12) 1102-1107
  • 110 Xiong GX, Zhan JM, Zuo KJ, Rong LW, Li JF, Xu G. Use of computational fluid dynamics to study the influence of the uncinate process on nasal airflow. J Laryngol Otol 2011; 125 (01) 30-37
  • 111 Bahmanzadeh H, Abouali O, Faramarzi M, Ahmadi G. Numerical simulation of airflow and micro-particle deposition in human nasal airway pre- and post-virtual sphenoidotomy surgery. Comput Biol Med 2015; 61: 8-18
  • 112 Xiong G, Zhan J, Zuo K, Li J, Rong L, Xu G. Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity. Med Biol Eng Comput 2008; 46 (11) 1161-1167
  • 113 Garcia GJ, Rhee JS, Senior BA, Kimbell JS. Septal deviation and nasal resistance: an investigation using virtual surgery and computational fluid dynamics. Am J Rhinol Allergy 2010; 24 (01) e46-e53
  • 114 Patel RG, Garcia GJ, Frank-Ito DO, Kimbell JS, Rhee JS. Simulating the nasal cycle with computational fluid dynamics. Otolaryngol Head Neck Surg 2015; 152 (02) 353-360
  • 115 Lee TS, Goyal P, Li C, Zhao K. Computational fluid dynamics to evaluate the effectiveness of inferior turbinate reduction techniques to improve nasal airflow. JAMA Facial Plast Surg 2018; 20 (04) 263-270
  • 116 Hariri BM, Rhee JS, Garcia GJ. Identifying patients who may benefit from inferior turbinate reduction using computer simulations. Laryngoscope 2015; 125 (12) 2635-2641
  • 117 Rhee JS, Pawar SS, Garcia GJ, Kimbell JS. Toward personalized nasal surgery using computational fluid dynamics. Arch Facial Plast Surg 2011; 13 (05) 305-310
  • 118 Vanhille DL, Garcia GJM, Asan O. et al. Virtual surgery for the nasal airway: a preliminary report on decision support and technology acceptance. JAMA Facial Plast Surg 2018; 20 (01) 63-69
  • 119 Eccles R. Neurological and pharmacological considerations. In: Proctor D, Andersen I. eds. The Nose: Upper Airway Physiology and the Atmospheric Environment. Amsterdam, the Netherlands: Elsevier Biomedical Press; 1982: 191-214
  • 120 Wolf M, Naftali S, Schroter RC, Elad D. Air-conditioning characteristics of the human nose. J Laryngol Otol 2004; 118 (02) 87-92