Semin Thromb Hemost 2021; 47(03): 295-307
DOI: 10.1055/s-0041-1725063
Review Article

Circulating Heparan Sulfate Proteoglycans as Biomarkers in Health and Disease

Antonio Junior Lepedda
1   Department of Biomedical Sciences, University of Sassari, Sassari, Italy
,
Gabriele Nieddu
1   Department of Biomedical Sciences, University of Sassari, Sassari, Italy
,
Zoi Piperigkou
2   Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
3   Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
,
Konstantina Kyriakopoulou
2   Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
3   Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
,
Nikolaos Karamanos
2   Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
3   Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
,
Marilena Formato
1   Department of Biomedical Sciences, University of Sassari, Sassari, Italy
› Author Affiliations

Abstract

Cell-surface heparan sulfate proteoglycans (HSPGs) play key roles in regulating cell behavior, cell signaling, and cell matrix interactions in both physiological and pathological conditions. Their soluble forms from glycocalyx shedding are not merely waste products, but, rather, bioactive molecules, detectable in serum, which may be useful as diagnostic and prognostic markers. In addition, as in the case of glypican-3 in hepatocellular carcinoma, they may be specifically expressed by pathological tissue, representing promising targets for immunotherapy. The primary goal of this comprehensive review is to critically survey the main findings of the clinical data from the last 20 years and provide readers with an overall picture of the diagnostic and prognostic value of circulating HSPGs. Moreover, issues related to the involvement of HSPGs in various pathologies, including cardiovascular disease, thrombosis, diabetes and obesity, kidney disease, cancer, trauma, sepsis, but also multiple sclerosis, preeclampsia, pathologies requiring surgery, pulmonary disease, and others will be discussed.

Supplementary Material



Publication History

Article published online:
01 April 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Karamanos NK, Piperigkou Z, Theocharis AD. et al. Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem Rev 2018; 118 (18) 9152-9232
  • 2 Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 2010; 277 (19) 3904-3923
  • 3 Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97: 4-27
  • 4 Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 2007; 9: 121-167
  • 5 Zhang X, Sun D, Song JW. et al. Endothelial cell dysfunction and glycocalyx - a vicious circle. Matrix Biol 2018; 71–72: 421-431
  • 6 Bennett HS, Luft JH, Hampton JC. Morphological classifications of vertebrate blood capillaries. Am J Physiol 1959; 196 (02) 381-390
  • 7 Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454 (03) 345-359
  • 8 Lennon FE, Singleton PA. Hyaluronan regulation of vascular integrity. Am J Cardiovasc Dis 2011; 1 (03) 200-213
  • 9 Machin DR, Phuong TT, Donato AJ. The role of the endothelial glycocalyx in advanced age and cardiovascular disease. Curr Opin Pharmacol 2019; 45: 66-71
  • 10 Dogné S, Flamion B, Caron N. Endothelial glycocalyx as a shield against diabetic vascular complications: involvement of hyaluronan and hyaluronidases. Arterioscler Thromb Vasc Biol 2018; 38 (07) 1427-1439
  • 11 Jourde-Chiche N, Fakhouri F, Dou L. et al. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 2019; 15 (02) 87-108
  • 12 Iba T, Levy JH. Derangement of the endothelial glycocalyx in sepsis. J Thromb Haemost 2019; 17 (02) 283-294
  • 13 Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 2019; 23 (01) 16
  • 14 Tuma M, Canestrini S, Alwahab Z, Marshall J. Trauma and endothelial glycocalyx: the microcirculation helmet?. Shock 2016; 46 (04) 352-357
  • 15 Becker BF, Jacob M, Leipert S, Salmon AH, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 2015; 80 (03) 389-402
  • 16 Celie JW, Beelen RH, van den Born J. Heparan sulfate proteoglycans in extravasation: assisting leukocyte guidance. Front Biosci 2009; 14: 4932-4949
  • 17 Kumar AV, Katakam SK, Urbanowitz AK, Gotte M. Heparan sulphate as a regulator of leukocyte recruitment in inflammation. Curr Protein Pept Sci 2015; 16 (01) 77-86
  • 18 Yang Y, Haeger SM, Suflita MA. et al. Fibroblast growth factor signaling mediates pulmonary endothelial glycocalyx reconstitution. Am J Respir Cell Mol Biol 2017; 56 (06) 727-737
  • 19 Schmidt EP, Li G, Li L. et al. The circulating glycosaminoglycan signature of respiratory failure in critically ill adults. J Biol Chem 2014; 289 (12) 8194-8202
  • 20 Meirovitz A, Goldberg R, Binder A, Rubinstein AM, Hermano E, Elkin M. Heparanase in inflammation and inflammation-associated cancer. FEBS J 2013; 280 (10) 2307-2319
  • 21 Oduah EI, Linhardt RJ, Sharfstein ST. Heparin: past, present, and future. Pharmaceuticals (Basel) 2016; 9 (03) E38
  • 22 Weiss R, Niecestro R, Raz I. The role of sulodexide in the treatment of diabetic nephropathy. Drugs 2007; 67 (18) 2681-2696
  • 23 Passi A, Vigetti D, Buraschi S, Iozzo RV. Dissecting the role of hyaluronan synthases in the tumor microenvironment. FEBS J 2019; 286 (15) 2937-2949
  • 24 Vigetti D, Karousou E, Viola M, Deleonibus S, De Luca G, Passi A. Hyaluronan: biosynthesis and signaling. Biochim Biophys Acta 2014; 1840 (08) 2452-2459
  • 25 Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 2007; 80 (21) 1921-1943
  • 26 Bourguignon V, Flamion B. Respective roles of hyaluronidases 1 and 2 in endogenous hyaluronan turnover. FASEB J 2016; 30 (06) 2108-2114
  • 27 Moseley R, Waddington RJ, Embery G. Degradation of glycosaminoglycans by reactive oxygen species derived from stimulated polymorphonuclear leukocytes. Biochim Biophys Acta 1997; 1362 (2–3): 221-231
  • 28 Soltés L, Mendichi R, Kogan G, Schiller J, Stankovska M, Arnhold J. Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules 2006; 7 (03) 659-668
  • 29 Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 1996; 98 (11) 2572-2579
  • 30 Iijima R, Takahashi H, Namme R, Ikegami S, Yamazaki M. Novel biological function of sialic acid (N-acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Lett 2004; 561 (1–3): 163-166
  • 31 Betteridge KB, Arkill KP, Neal CR. et al. Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function. J Physiol 2017; 595 (15) 5015-5035
  • 32 Majerczak J, Duda K, Chlopicki S. et al. Endothelial glycocalyx integrity is preserved in young, healthy men during a single bout of strenuous physical exercise. Physiol Res 2016; 65 (02) 281-291
  • 33 Majerczak J, Grandys M, Duda K. et al. Moderate-intensity endurance training improves endothelial glycocalyx layer integrity in healthy young men. Exp Physiol 2017; 102 (01) 70-85
  • 34 Afratis NA, Nikitovic D, Multhaupt HA, Theocharis AD, Couchman JR, Karamanos NK. Syndecans - key regulators of cell signaling and biological functions. FEBS J 2017; 284 (01) 27-41
  • 35 Chung H, Multhaupt HA, Oh ES, Couchman JR. Minireview: syndecans and their crucial roles during tissue regeneration. FEBS Lett 2016; 590 (15) 2408-2417
  • 36 Peysselon F, Xue B, Uversky VN, Ricard-Blum S. Intrinsic disorder of the extracellular matrix. Mol Biosyst 2011; 7 (12) 3353-3365
  • 37 Xing Y, Xu Q, Lee C. Widespread production of novel soluble protein isoforms by alternative splicing removal of transmembrane anchoring domains. FEBS Lett 2003; 555 (03) 572-578
  • 38 Couchman JR, Gopal S, Lim HC, Nørgaard S, Multhaupt HA. Fell-Muir lecture: syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int J Exp Pathol 2015; 96 (01) 1-10
  • 39 Murakami M, Horowitz A, Tang S, Ware JA, Simons M. Protein kinase C (PKC) delta regulates PKCalpha activity in a Syndecan-4-dependent manner. J Biol Chem 2002; 277 (23) 20367-20371
  • 40 Horowitz A, Murakami M, Gao Y, Simons M. Phosphatidylinositol-4,5-bisphosphate mediates the interaction of syndecan-4 with protein kinase C. Biochemistry 1999; 38 (48) 15871-15877
  • 41 Horowitz A, Tkachenko E, Simons M. Fibroblast growth factor-specific modulation of cellular response by syndecan-4. J Cell Biol 2002; 157 (04) 715-725
  • 42 Cheng B, Montmasson M, Terradot L, Rousselle P. Syndecans as cell surface receptors in cancer biology. A focus on their Interaction with PDZ domain proteins. Front Pharmacol 2016; 7: 10
  • 43 Oh ES, Woods A, Couchman JR. Multimerization of the cytoplasmic domain of syndecan-4 is required for its ability to activate protein kinase C. J Biol Chem 1997; 272 (18) 11805-11811
  • 44 Chu CL, Buczek-Thomas JA, Nugent MA. Heparan sulphate proteoglycans modulate fibroblast growth factor-2 binding through a lipid raft-mediated mechanism. Biochem J 2004; 379 (Pt 2): 331-341
  • 45 Schmidt A, Echtermeyer F, Alozie A, Brands K, Buddecke E. Plasmin- and thrombin-accelerated shedding of syndecan-4 ectodomain generates cleavage sites at Lys(114)-Arg(115) and Lys(129)-Val(130) bonds. J Biol Chem 2005; 280 (41) 34441-34446
  • 46 Piperigkou Z, Mohr B, Karamanos N, Götte M. Shed proteoglycans in tumor stroma. Cell Tissue Res 2016; 365 (03) 643-655
  • 47 Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 2002; 277 (51) 49175-49185
  • 48 Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007; 446 (7139): 1030-1037
  • 49 Nadanaka S, Kitagawa H. Heparan sulphate biosynthesis and disease. J Biochem 2008; 144 (01) 7-14
  • 50 Qiao D, Meyer K, Mundhenke C, Drew SA, Friedl A. Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 signaling in brain endothelial cells. Specific role for glypican-1 in glioma angiogenesis. J Biol Chem 2003; 278 (18) 16045-16053
  • 51 Tkachenko E, Rhodes JM, Simons M. Syndecans: new kids on the signaling block. Circ Res 2005; 96 (05) 488-500
  • 52 Kato M, Wang H, Kainulainen V. et al. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 1998; 4 (06) 691-697
  • 53 Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, Vlodavsky I. Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 2010; 277 (19) 3890-3903
  • 54 Okamoto O, Bachy S, Odenthal U. et al. Normal human keratinocytes bind to the alpha3LG4/5 domain of unprocessed laminin-5 through the receptor syndecan-1. J Biol Chem 2003; 278 (45) 44168-44177
  • 55 Gondelaud F, Ricard-Blum S. Structures and interactions of syndecans. FEBS J 2019; 286 (15) 2994-3007
  • 56 Filmus J, Selleck SB. Glypicans: proteoglycans with a surprise. J Clin Invest 2001; 108 (04) 497-501
  • 57 Filmus J, Capurro M, Rast J. Glypicans. Genome Biol 2008; 9 (05) 224
  • 58 Belting M. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 2003; 28 (03) 145-151
  • 59 De Cat B, Muyldermans SY, Coomans C. et al. Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J Cell Biol 2003; 163 (03) 625-635
  • 60 Traister A, Shi W, Filmus J. Mammalian Notum induces the release of glypicans and other GPI-anchored proteins from the cell surface. Biochem J 2008; 410 (03) 503-511
  • 61 Hippo Y, Watanabe K, Watanabe A. et al. Identification of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma. Cancer Res 2004; 64 (07) 2418-2423
  • 62 Filmus J. Glypicans in growth control and cancer. Glycobiology 2001; 11 (03) 19R-23R
  • 63 Rosenberg RD, Shworak NW, Liu J, Schwartz JJ, Zhang L. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated?. J Clin Invest 1997; 100 (11, Suppl): S67-S75
  • 64 Benjamin EJ, Blaha MJ, Chiuve SE. et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 2017; 135 (10) e146-e603
  • 65 Libby P, Buring JE, Badimon L. et al. Atherosclerosis. Nat Rev Dis Primers 2019; 5 (01) 56
  • 66 Lepedda AJ, Formato M. Oxidative modifications in advanced atherosclerotic plaques: a focus on in situ protein sulfhydryl group oxidation. Oxid Med Cell Longev 2020; 2020: 6169825
  • 67 Ostrowski SR, Pedersen SH, Jensen JS, Mogelvang R, Johansson PI. Acute myocardial infarction is associated with endothelial glycocalyx and cell damage and a parallel increase in circulating catecholamines. Crit Care 2013; 17 (01) R32
  • 68 Solbu MD, Kolset SO, Jenssen TG. et al. Gender differences in the association of syndecan-4 with myocardial infarction: the population-based Tromsø Study. Atherosclerosis 2018; 278: 166-173
  • 69 Wernly B, Fuernau G, Masyuk M. et al. Syndecan-1 predicts outcome in patients with ST-segment elevation infarction independent from infarct-related myocardial injury. Sci Rep 2019; 9 (01) 18367
  • 70 Jung C, Fuernau G, Muench P. et al. Impairment of the endothelial glycocalyx in cardiogenic shock and its prognostic relevance. Shock 2015; 43 (05) 450-455
  • 71 Tromp J, van der Pol A, Klip IT. et al. Fibrosis marker syndecan-1 and outcome in patients with heart failure with reduced and preserved ejection fraction. Circ Heart Fail 2014; 7 (03) 457-462
  • 72 Bielecka-Dabrowa A, Gluba-Brzózka A, Michalska-Kasiczak M, Misztal M, Rysz J, Banach M. The multi-biomarker approach for heart failure in patients with hypertension. Int J Mol Sci 2015; 16 (05) 10715-10733
  • 73 Demissei BG, Valente MA, Cleland JG. et al. Optimizing clinical use of biomarkers in high-risk acute heart failure patients. Eur J Heart Fail 2016; 18 (03) 269-280
  • 74 Neves FM, Meneses GC, Sousa NE. et al. Syndecan-1 in acute decompensated heart failure--association with renal function and mortality. Circ J 2015; 79 (07) 1511-1519
  • 75 DellaValle B, Hasseldam H, Johansen FF, Iversen HK, Rungby J, Hempel C. Multiple soluble components of the glycocalyx are increased in patient plasma after ischemic stroke. Stroke 2019; 50 (10) 2948-2951
  • 76 Miranda CH, de Carvalho Borges M, Schmidt A, Marin-Neto JA, Pazin-Filho A. Evaluation of the endothelial glycocalyx damage in patients with acute coronary syndrome. Atherosclerosis 2016; 247: 184-188
  • 77 Zoungas S, Woodward M, Li Q. et al; ADVANCE Collaborative group. Impact of age, age at diagnosis and duration of diabetes on the risk of macrovascular and microvascular complications and death in type 2 diabetes. Diabetologia 2014; 57 (12) 2465-2474
  • 78 Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet 2017; 389 (10085): 2239-2251
  • 79 Nieuwdorp M, van Haeften TW, Gouverneur MC. et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 2006; 55 (02) 480-486
  • 80 Nieuwdorp M, Mooij HL, Kroon J. et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 2006; 55 (04) 1127-1132
  • 81 Svennevig K, Kolset SO, Bangstad HJ. Increased syndecan-1 in serum is related to early nephropathy in type 1 diabetes mellitus patients. Diabetologia 2006; 49 (09) 2214-2216
  • 82 Kolseth IB, Reine TM, Parker K. et al. Increased levels of inflammatory mediators and proinflammatory monocytes in patients with type I diabetes mellitus and nephropathy. J Diabetes Complications 2017; 31 (01) 245-252
  • 83 Wang JB, Zhang YJ, Zhang Y. et al. Negative correlation between serum syndecan-1 and apolipoprotein A1 in patients with type 2 diabetes mellitus. Acta Diabetol 2013; 50 (02) 111-115
  • 84 Padberg JS, Wiesinger A, di Marco GS. et al. Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 2014; 234 (02) 335-343
  • 85 Vlahu CA, Lemkes BA, Struijk DG, Koopman MG, Krediet RT, Vink H. Damage of the endothelial glycocalyx in dialysis patients. J Am Soc Nephrol 2012; 23 (11) 1900-1908
  • 86 Koch J, Idzerda NMA, Dam W, Assa S, Franssen CFM, van den Born J. Plasma syndecan-1 in hemodialysis patients associates with survival and lower markers of volume status. Am J Physiol Renal Physiol 2019; 316 (01) F121-F127
  • 87 Dane MJ, Khairoun M, Lee DH. et al. Association of kidney function with changes in the endothelial surface layer. Clin J Am Soc Nephrol 2014; 9 (04) 698-704
  • 88 Adepu S, Rosman CW, Dam W. et al. Incipient renal transplant dysfunction associates with tubular syndecan-1 expression and shedding. Am J Physiol Renal Physiol 2015; 309 (02) F137-F145
  • 89 Lepedda AJ, De Muro P, Capobianco G, Formato M. Significance of urinary glycosaminoglycans/proteoglycans in the evaluation of type 1 and type 2 diabetes complications. J Diabetes Complications 2017; 31 (01) 149-155
  • 90 Nakamura K, Fuster JJ, Walsh K. Adipokines: a link between obesity and cardiovascular disease. J Cardiol 2014; 63 (04) 250-259
  • 91 Gesta S, Blüher M, Yamamoto Y. et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A 2006; 103 (17) 6676-6681
  • 92 Ussar S, Bezy O, Blüher M, Kahn CR. Glypican-4 enhances insulin signaling via interaction with the insulin receptor and serves as a novel adipokine. Diabetes 2012; 61 (09) 2289-2298
  • 93 Flehmig G, Scholz M, Klöting N. et al. Identification of adipokine clusters related to parameters of fat mass, insulin sensitivity and inflammation. PLoS One 2014; 9 (06) e99785
  • 94 Zhu HJ, Pan H, Cui Y. et al. The changes of serum glypican4 in obese patients with different glucose metabolism status. J Clin Endocrinol Metab 2014; 99 (12) E2697-E2701
  • 95 Leelalertlauw C, Korwutthikulrangsri M, Mahachoklertwattana P. et al. Serum glypican 4 level in obese children and its relation to degree of obesity. Clin Endocrinol (Oxf) 2017; 87 (06) 689-695
  • 96 Vassilakopoulos TP, Kyrtsonis MC, Papadogiannis A. et al. Serum levels of soluble syndecan-1 in Hodgkin's lymphoma. Anticancer Res 2005; 25 (6C): 4743-4746
  • 97 Grindel B, Li Q, Arnold R. et al. Perlecan/HSPG2 and matrilysin/MMP-7 as indices of tissue invasion: tissue localization and circulating perlecan fragments in a cohort of 288 radical prostatectomy patients. Oncotarget 2016; 7 (09) 10433-10447
  • 98 Levin RA, Lund ME, Truong Q. et al. Development of a reliable assay to measure glypican-1 in plasma and serum reveals circulating glypican-1 as a novel prostate cancer biomarker. Oncotarget 2018; 9 (32) 22359-22367
  • 99 Szarvas T, Sevcenco S, Modos O. et al. Circulating syndecan-1 is associated with chemotherapy-resistance in castration-resistant prostate cancer. Urol Oncol 2018; 36 (06) 312.e9-312.e15
  • 100 Lai X, Wang M, McElyea SD, Sherman S, House M, Korc M. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett 2017; 393: 86-93
  • 101 Melo SA, Luecke LB, Kahlert C. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015; 523 (7559): 177-182
  • 102 Joensuu H, Anttonen A, Eriksson M. et al. Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 2002; 62 (18) 5210-5217
  • 103 Wołowiec D, Dybko J, Wróbel T. et al. Circulating sCD138 and some angiogenesis-involved cytokines help to anticipate the disease progression of early-stage B-cell chronic lymphocytic leukemia. Mediators Inflamm 2006; 2006 (03) 42394
  • 104 Jilani I, Wei C, Bekele BN. et al. Soluble syndecan-1 (sCD138) as a prognostic factor independent of mutation status in patients with chronic lymphocytic leukemia. Int J Lab Hematol 2009; 31 (01) 97-105
  • 105 Li J, Chen Y, Guo X. et al. GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J Cell Mol Med 2017; 21 (05) 838-847
  • 106 Zhou S, O'Gorman MR, Yang F, Andresen K, Wang L. Glypican 3 as a serum marker for hepatoblastoma. Sci Rep 2017; 7: 45932
  • 107 El-Serag HB. Hepatocellular carcinoma. N Engl J Med 2011; 365 (12) 1118-1127
  • 108 Hsu HC, Cheng W, Lai PL. Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res 1997; 57 (22) 5179-5184
  • 109 Li J, Gao JZ, Du JL, Wei LX. Prognostic and clinicopathological significance of glypican-3 overexpression in hepatocellular carcinoma: a meta-analysis. World J Gastroenterol 2014; 20 (20) 6336-6344
  • 110 Xiao WK, Qi CY, Chen D. et al. Prognostic significance of glypican-3 in hepatocellular carcinoma: a meta-analysis. BMC Cancer 2014; 14: 104
  • 111 Liu H, Yang C, Lu W, Zeng Y. Prognostic significance of glypican-3 expression in hepatocellular carcinoma: a meta-analysis. Medicine (Baltimore) 2018; 97 (04) e9702
  • 112 Zhang J, Zhang M, Ma H. et al. Overexpression of glypican-3 is a predictor of poor prognosis in hepatocellular carcinoma: an updated meta-analysis. Medicine (Baltimore) 2018; 97 (24) e11130
  • 113 Moudi B, Heidari Z, Mahmoudzadeh-Sagheb H. Meta-analysis and systematic review of prognostic significance of Glypican-3 in patients with hepatitis B-related hepatocellular carcinoma. Virusdisease 2019; 30 (02) 193-200
  • 114 Zhou F, Shang W, Yu X, Tian J. Glypican-3: a promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev 2018; 38 (02) 741-767
  • 115 Guo M, Zhang H, Zheng J, Liu Y. Glypican-3: a new target for diagnosis and treatment of hepatocellular carcinoma. J Cancer 2020; 11 (08) 2008-2021
  • 116 Liu XF, Hu ZD, Liu XC, Cao Y, Ding CM, Hu CJ. Diagnostic accuracy of serum glypican-3 for hepatocellular carcinoma: a systematic review and meta-analysis. Clin Biochem 2014; 47 (03) 196-200
  • 117 Yang SL, Fang X, Huang ZZ. et al. Can serum glypican-3 be a biomarker for effective diagnosis of hepatocellular carcinoma? A meta-analysis of the literature. Dis Markers 2014; 2014: 127831
  • 118 Jia X, Liu J, Gao Y, Huang Y, Du Z. Diagnosis accuracy of serum glypican-3 in patients with hepatocellular carcinoma: a systematic review with meta-analysis. Arch Med Res 2014; 45 (07) 580-588
  • 119 Liu JW, Zuo XL, Wang S. Diagnosis accuracy of serum glypican-3 level in patients with hepatocellular carcinoma and liver cirrhosis: a meta-analysis. Eur Rev Med Pharmacol Sci 2015; 19 (19) 3655-3673
  • 120 Xu D, Su C, Sun L, Gao Y, Li Y. Performance of serum glypican 3 in diagnosis of hepatocellular carcinoma: a meta-analysis. Ann Hepatol 2019; 18 (01) 58-67
  • 121 Attallah AM, El-Far M, Omran MM. et al. GPC-HCC model: a combination of glybican-3 with other routine parameters improves the diagnostic efficacy in hepatocellular carcinoma. Tumour Biol 2016; 37 (09) 12571-12577
  • 122 Ofuji K, Saito K, Suzuki S. et al. Perioperative plasma glypican-3 level may enable prediction of the risk of recurrence after surgery in patients with stage I hepatocellular carcinoma. Oncotarget 2017; 8 (23) 37835-37844
  • 123 Shimizu Y, Mizuno S, Fujinami N. et al. Plasma and tumoral glypican-3 levels are correlated in patients with hepatitis C virus-related hepatocellular carcinoma. Cancer Sci 2020; 111 (02) 334-342
  • 124 Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007; 7 (08) 585-598
  • 125 Akl MR, Nagpal P, Ayoub NM. et al. Molecular and clinical profiles of syndecan-1 in solid and hematological cancer for prognosis and precision medicine. Oncotarget 2015; 6 (30) 28693-28715
  • 126 Ramani VC, Purushothaman A, Stewart MD. et al. The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. FEBS J 2013; 280 (10) 2294-2306
  • 127 Tripathi K, Ramani VC, Bandari SK. et al. Heparanase promotes myeloma stemness and in vivo tumorigenesis. Matrix Biol 2020; 88: 53-68
  • 128 Reijmers RM, Spaargaren M, Pals ST. Heparan sulfate proteoglycans in the control of B cell development and the pathogenesis of multiple myeloma. FEBS J 2013; 280 (10) 2180-2193
  • 129 Mahtouk K, Cremer FW, Rème T. et al. Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma. Oncogene 2006; 25 (54) 7180-7191
  • 130 Mahtouk K, Hose D, Raynaud P. et al. Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood 2007; 109 (11) 4914-4923
  • 131 Purushothaman A, Uyama T, Kobayashi F. et al. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 2010; 115 (12) 2449-2457
  • 132 Purushothaman A, Sanderson RD. Heparanase: a dynamic promoter of myeloma progression. Adv Exp Med Biol 2020; 1221: 331-349
  • 133 Ritchie JP, Ramani VC, Ren Y. et al. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 2011; 17 (06) 1382-1393
  • 134 Seidel C, Sundan A, Hjorth M. et al. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 2000; 95 (02) 388-392
  • 135 Bjøro B, Dalgard O, Midgard H, Verbaan H, Småstuen MC, Rustøen T. Increased hope following successful treatment for hepatitis C infection. J Adv Nurs 2018; 74 (03) 724-733
  • 136 Aref S, Goda T, El-Sherbiny M. Syndecan-1 in multiple myeloma: relationship to conventional prognostic factors. Hematology 2003; 8 (04) 221-228
  • 137 Jánosi J, Sebestyén A, Mikala G, Németh J, Kiss Z, Vályi-Nagy I. Soluble syndecan-1 levels in different plasma cell dyscrasias and in different stages of multiple myeloma. Haematologica 2004; 89 (03) 370-371
  • 138 Lovell R, Dunn JA, Begum G. et al; Working Party on Leukaemia in Adults of the National Cancer Research Institute Haematological Oncology Clinical Studies Group. Soluble syndecan-1 level at diagnosis is an independent prognostic factor in multiple myeloma and the extent of fall from diagnosis to plateau predicts for overall survival. Br J Haematol 2005; 130 (04) 542-548
  • 139 Yang Y, MacLeod V, Dai Y. et al. The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 2007; 110 (06) 2041-2048
  • 140 Katz BZ. Adhesion molecules--the lifelines of multiple myeloma cells. Semin Cancer Biol 2010; 20 (03) 186-195
  • 141 Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 2002; 71: 435-471