Semin Musculoskelet Radiol 2021; 25(03): 433-440
DOI: 10.1055/s-0041-1731060
Review Article

3D MRI of the Spine

Meghan Sahr
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
,
Ek Tsoon Tan
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
,
Darryl B. Sneag
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
› Institutsangaben

Abstract

Three-dimensional (3D) magnetic resonance imaging of the spine is now clinically feasible due to technological advancements. Its advantages over two-dimensional imaging include higher in-plane spatial resolution and the ability for reformation in any plane that enables time savings in image acquisition and aids more accurate interpretation. Multispectral 3D techniques for imaging around metal are sometimes useful for evaluating anatomy adjacent to spinal fixation hardware. 3D gradient-recalled echo sequences, including ultrashort or zero time to echo sequences, can provide osseous detail similar to conventional computed tomography.

Financial Disclosure

The Hospital for Special Surgery receives institutional research support from GE Healthcare.




Publikationsverlauf

Artikel online veröffentlicht:
21. September 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Jenis LG, An HS. Spine update. Lumbar foraminal stenosis. Spine 2000; 25 (03) 389-394
  • 2 Taber KH, Herrick RC, Weathers SW, Kumar AJ, Schomer DF, Hayman LA. Pitfalls and artifacts encountered in clinical MR imaging of the spine. Radiographics 1998; 18 (06) 1499-1521
  • 3 Glaser C, D'Anastasi M, Theisen D. et al. Understanding 3D TSE sequences: advantages, disadvantages, and application in MSK imaging. Semin Musculoskelet Radiol 2015; 19 (04) 321-327
  • 4 Singh K, Helms CA, Fiorella D, Major NA. Disc space-targeted angled axial MR images of the lumbar spine: a potential source of diagnostic error. Skeletal Radiol 2007; 36 (12) 1147-1153
  • 5 Morrison W, Carrino J, Flanders A. MRI of the Spine: A Guide for Orthopedic Surgeons. New York, NY: Springer; 2020
  • 6 Schwaiger BJ, Schneider C, Kronthaler S. et al. CT-like images based on T1 spoiled gradient-echo and ultra-short echo time MRI sequences for the assessment of vertebral fractures and degenerative bone changes of the spine. Eur Radiol 2021; January 14 (Epub ahead of print)
  • 7 Argentieri EC, Koff MF, Breighner RE, Endo Y, Shah PH, Sneag DB. Diagnostic accuracy of zero-echo time MRI for the evaluation of cervical neural foraminal stenosis. Spine 2018; 43 (13) 928-933
  • 8 Dietemann JL, Bogorin A, Abu Eid M. et al. Tips and traps in neurological imaging: imaging the perimedullary spaces. Diagn Interv Imaging 2012; 93 (12) 985-992
  • 9 Naraghi A, White LM. Three-dimensional MRI of the musculoskeletal system. AJR Am J Roentgenol 2012; 199 (03) W283–W293
  • 10 Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42 (05) 952-962
  • 11 Griswold MA, Jakob PM, Heidemann RM. et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47 (06) 1202-1210
  • 12 Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58 (06) 1182-1195
  • 13 Fritz J, Fritz B, Thawait GG, Meyer H, Gilson WD, Raithel E. Three-dimensional CAIPIRINHA SPACE TSE for 5-minute high-resolution MRI of the knee. Invest Radiol 2016; 51 (10) 609-617
  • 14 Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF. Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the knee through incoherent k-space undersampling and iterative reconstruction—first experience. Invest Radiol 2016; 51 (06) 400-409
  • 15 Busse RF, Brau AC, Vu A. et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008; 60 (03) 640-649
  • 16 Li G, Nittka M, Hollenbach H. et al. The shifted radial reordering for intermediate TE imaging in 3D long echo train acquisition. International Society for Magnetic Resonance in Medicine. 2009 . Available at: https://archive.ismrm.org/2009/2623.html
  • 17 Blizzard DJ, Haims AH, Lischuk AW, Arunakul R, Hustedt JW, Grauer JN. 3D-FSE isotropic MRI of the lumbar spine: novel application of an existing technology. J Spinal Disord Tech 2015; 28 (04) 152-157 , date accessed: 3/18/21
  • 18 Busse RF, Hariharan H, Vu A, Brittain JH. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 2006; 55 (05) 1030-1037
  • 19 Kwon JW, Yoon YC, Choi SH. Three-dimensional isotropic T2-weighted cervical MRI at 3T: comparison with two-dimensional T2-weighted sequences. Clin Radiol 2012; 67 (02) 106-113
  • 20 Chokshi FH, Sadigh G, Carpenter W, Allen JW. Diagnostic quality of 3D T2-SPACE compared with T2-FSE in the evaluation of cervical spine MRI anatomy. AJNR Am J Neuroradiol 2017; 38 (04) 846-850
  • 21 Sayah A, Jay AK, Toaff JS, Makariou EV, Berkowitz F. Effectiveness of a rapid lumbar spine MRI protocol using 3D T2-weighted SPACE imaging versus a standard protocol for evaluation of degenerative changes of the lumbar spine. AJR Am J Roentgenol 2016; 207 (03) 614-620
  • 22 Sung J, Jee WH, Jung JY. et al. Diagnosis of nerve root compromise of the lumbar spine: evaluation of the performance of three-dimensional isotropic T2-weighted turbo spin-echo SPACE sequence at 3T. Korean J Radiol 2017; 18 (01) 249-259
  • 23 Hossein J, Fariborz F, Mehrnaz R, Babak R. Evaluation of diagnostic value and T2-weighted three-dimensional isotropic turbo spin-echo (3D-SPACE) image quality in comparison with T2-weighted two-dimensional turbo spin-echo (2D-TSE) sequences in lumbar spine MR imaging. Eur J Radiol Open 2018; 6: 36-41
  • 24 Lichy MP, Wietek BM, Mugler III JP. et al. Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences. Invest Radiol 2005; 40 (12) 754-760
  • 25 Mugler III JP. Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 2014; 39 (04) 745-767
  • 26 Fritz J, Guggenberger R, Del Grande F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques. AJR Am J Roentgenol 2021; 216 (03) 718-733
  • 27 Del Grande F, Guggenberger R, Fritz J. Rapid musculoskeletal MRI in 2021: value and optimized use of widely accessible techniques. AJR Am J Roentgenol 2021; 216 (03) 704-717
  • 28 Meindl T, Wirth S, Weckbach S, Dietrich O, Reiser M, Schoenberg SO. Magnetic resonance imaging of the cervical spine: comparison of 2D T2-weighted turbo spin echo, 2D T2*weighted gradient-recalled echo and 3D T2-weighted variable flip-angle turbo spin echo sequences. Eur Radiol 2009; 19 (03) 713-721
  • 29 Baumert B, Wörtler K, Steffinger D, Schmidt GP, Reiser MF, Baur-Melnyk A. Assessment of the internal craniocervical ligaments with a new magnetic resonance imaging sequence: three-dimensional turbo spin echo with variable flip-angle distribution (SPACE). Magn Reson Imaging 2009; 27 (07) 954-960
  • 30 Fu MC, Buerba RA, Neway III WE. et al. Three-dimensional isotropic MRI of the cervical spine: a diagnostic comparison with conventional MRI. Clin Spine Surg 2016; 29 (02) 66-71
  • 31 Gerigk L, Bostel T, Hegewald A. et al. Dynamic magnetic resonance imaging of the cervical spine with high-resolution 3-dimensional T2-imaging. Clin Neuroradiol 2012; 22 (01) 93-99
  • 32 Koontz NA, Wiggins III RH, Mills MK. et al. Less is more: efficacy of rapid 3D-T2 SPACE in ED patients with acute atypical low back pain. Acad Radiol 2017; 24 (08) 988-994
  • 33 Lee S, Jee WH, Jung JY, Lee SY, Ryu KS, Ha KY. MRI of the lumbar spine: comparison of 3D isotropic turbo spin-echo SPACE sequence versus conventional 2D sequences at 3.0 T. Acta Radiol 2015; 56 (02) 174-181
  • 34 Weinberger E, Murakami JW, Shaw DW, White KS, Radvilas MK, Yuan C. Three-dimensional fast spin echo T1-weighted imaging of the pediatric spine. J Comput Assist Tomogr 1995; 19 (05) 721-725
  • 35 Cho HH, Choi YH, Cheon JE. et al. Free-breathing radial 3D fat-suppressed T1-weighted gradient-echo sequence for contrast-enhanced pediatric spinal imaging: comparison with T1-weighted turbo spin-echo sequence. AJR Am J Roentgenol 2016; 207 (01) 177-182
  • 36 Edjlali M, Roca P, Rabrait C, Naggara O, Oppenheim C. 3D fast spin-echo T1 black-blood imaging for the diagnosis of cervical artery dissection. AJNR Am J Neuroradiol 2013; 34 (09) E103-E106
  • 37 Luo Y, Guo ZN, Niu PP. et al. 3D T1-weighted black blood sequence at 3.0 Tesla for the diagnosis of cervical artery dissection. Stroke Vasc Neurol 2016; 1 (03) 140-146
  • 38 Cuvinciuc V, Viallon M, Momjian-Mayor I. et al. 3D fat-saturated T1 SPACE sequence for the diagnosis of cervical artery dissection. Neuroradiology 2013; 55 (05) 595-602
  • 39 Asiri A, Dimpudus F, Atcheson N, Al-Najjar A, McMahon K, Kurniawan ND. Comparison between 2D and 3D MEDIC for human cervical spinal cord MRI at 3T. J Med Radiat Sci 2021; 68 (01) 4-12
  • 40 Hu HH, Benkert T, Smith M. et al. Post-contrast T1-weighted spine 3T MRI in children using a golden-angle radial acquisition. Neuroradiology 2019; 61 (03) 341-349
  • 41 Ozturk A, Aygun N, Smith SA, Caffo B, Calabresi PA, Reich DS. Axial 3D gradient-echo imaging for improved multiple sclerosis lesion detection in the cervical spinal cord at 3T. Neuroradiology 2013; 55 (04) 431-439
  • 42 Nair G, Absinta M, Reich DS. Optimized T1-MPRAGE sequence for better visualization of spinal cord multiple sclerosis lesions at 3T. AJNR Am J Neuroradiol 2013; 34 (11) 2215-2222
  • 43 Casselman JW, Kuhweide R, Deimling M, Ampe W, Dehaene I, Meeus L. Constructive interference in steady state-3DFT MR imaging of the inner ear and cerebellopontine angle. AJNR Am J Neuroradiol 1993; 14 (01) 47-57
  • 44 Takashima H, Takebayashi T, Shishido H. et al. Comparison with magnetic resonance three-dimensional sequence for lumbar nerve root with intervertebral foramen. Asian Spine J 2016; 10 (01) 59-64
  • 45 Weiger M, Brunner DO, Dietrich BE, Müller CF, Pruessmann KP. ZTE imaging in humans. Magn Reson Med 2013; 70 (02) 328-332
  • 46 Wiesinger F, Sacolick LI, Menini A. et al. Zero TE MR bone imaging in the head. Magn Reson Med 2016; 75 (01) 107-114
  • 47 Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system. J Magn Reson Imaging 2015; 41 (04) 870-883
  • 48 Grodzki DM, Jakob PM, Heismann B. Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 2012; 67 (02) 510-518
  • 49 Mastrogiacomo S, Dou W, Jansen JA, Walboomers XF. Magnetic resonance imaging of hard tissues and hard tissue engineered bio-substitutes. Mol Imaging Biol 2019; 21 (06) 1003-1019
  • 50 Jans LBO, Chen M, Elewaut D. et al. MRI-based synthetic CT in the detection of structural lesions in patients with suspected sacroiliitis: comparison with MRI. Radiology 2021; 298 (02) 343-349
  • 51 Staartjes VE, Seevinck PR, Vandertop WP, van Stralen M, Schröder ML. Magnetic resonance imaging-based synthetic computed tomography of the lumbar spine for surgical planning: a clinical proof-of-concept. Neurosurg Focus 2021; 50 (01) E13
  • 52 Talbot BS, Weinberg EP. MR imaging with metal-suppression sequences for evaluation of total joint arthroplasty. Radiographics 2016; 36 (01) 209-225
  • 53 Hilgenfeld T, Prager M, Schwindling FS. et al. MSVAT-SPACE-STIR and SEMAC-STIR for reduction of metallic artifacts in 3T head and neck MRI. AJNR Am J Neuroradiol 2018; 39 (07) 1322-1329
  • 54 Xin C, Liu H, Li S, Lin G. Using SEMAC at 3 T MR to evaluate spinal metallic implants and peripheral soft tissue lesions. Medicine (Baltimore) 2020; 99 (25) e20139
  • 55 Gutierrez LB, Do BH, Gold GE. et al. MR imaging near metallic implants using MAVRIC SL: initial clinical experience at 3T. Acad Radiol 2015; 22 (03) 370-379
  • 56 Qi S, Wu ZG, Mu YF. et al. SEMAC-VAT MR imaging unravels peri-instrumentation lesions in patients with attendant symptoms after spinal surgery. Medicine (Baltimore) 2016; 95 (14) e3184
  • 57 Han SB, Yoon YC, Kwon JW. Comparison study between conventional sequence and slice-encoding metal artifact correction (SEMAC) in the diagnosis of postoperative complications in patients receiving lumbar inter-body fusion and pedicle screw fixation surgery. PLoS One 2016; 11 (10) e0163745
  • 58 Johnson PM, Recht MP, Knoll F. Improving the speed of MRI with artificial intelligence. Semin Musculoskelet Radiol 2020; 24 (01) 12-20
  • 59 Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 2019; 49 (04) 939-954
  • 60 Sun S, Carrino J, Mintz D. et al. Evaluation of deep-learning reconstructed high-resolution 3D lumbar spine MRI to improve image quality. Paper presented at: International Society for Magnetic Resonance in Medicine (ISMRM) Annual Meeting [virtual]; May 15–20, 2021
  • 61 Fujita S, Hagiwara A, Hori M. et al. 3D quantitative synthetic MRI-derived cortical thickness and subcortical brain volumes: scan-rescan repeatability and comparison with conventional T1-weighted images. J Magn Reson Imaging 2019; 50 (06) 1834-1842
  • 62 Fujita S, Yokoyama K, Hagiwara A. et al. 3D quantitative synthetic MRI in the evaluation of multiple sclerosis lesions. AJNR Am J Neuroradiol 2021; 42 (03) 471-478
  • 63 Tanenbaum LN, Tsiouris AJ, Johnson AN. et al. Synthetic MRI for clinical neuroimaging: results of the Magnetic Resonance Image Compilation (MAGiC) prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 2017; 38 (06) 1103-1110
  • 64 Kumar NM, Fritz B, Stern SE, Warntjes JBM, Lisa Chuah YM, Fritz J. Synthetic MRI of the knee: phantom validation and comparison with conventional MRI. Radiology 2018; 289 (02) 465-477
  • 65 Vargas MI, Drake-Pérez M, Delattre BMA, Boto J, Lovblad KO, Boudabous S. Feasibility of a synthetic MR imaging sequence for spine imaging. AJNR Am J Neuroradiol 2018; 39 (09) 1756-1763
  • 66 Zhang W, Zhu J, Xu X, Fan G. Synthetic MRI of the lumbar spine at 3.0 T: feasibility and image quality comparison with conventional MRI. Acta Radiol 2020; 61 (04) 461-470
  • 67 Oulbacha R, Kadoury S. MRI to C-arm spine registration through Pseudo-3D CycleGANs with differentiable histograms. Med Phys 2020; 47 (12) 6319-6333