Semin intervent Radiol 2021; 38(04): 460-465
DOI: 10.1055/s-0041-1735569
Review Article

Post Yttrium-90 Imaging

Mitchell Rice
1   Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
,
Matthew Krosin
1   Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
,
Paul Haste
1   Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
› Author Affiliations

Abstract

Transarterial radioembolization with yttrium-90 (90Y) is a mainstay for the treatment of liver cancer. Imaging the distribution following delivery is a concept that dates back to the 1960s. As β particles are created during 90Y decay, bremsstrahlung radiation is created as the particles interact with tissues, allowing for imaging with a gamma camera. Inherent qualities of bremsstrahlung radiation make its imaging difficult. SPECT and SPECT/CT can be used but suffer from limitations related to low signal-to-noise bremsstrahlung radiation. However, with optimized imaging protocols, clinically adequate images can still be obtained. A finite but detectable number of positrons are also emitted during 90Y decay, and many studies have demonstrated the ability of commercial PET/CT and PET/MR scanners to image these positrons to understand 90Y distribution and help quantify dose. PET imaging has been proven to be superior to SPECT for quantitative imaging, and therefore will play an important role going forward as we try and better understand dose/response and dose/toxicity relationships to optimize personalized dosimetry. The availability of PET imaging will likely remain the biggest barrier to its use in routine post-90Y imaging; thus, SPECT/CT imaging with optimized protocols should be sufficient for most posttherapy subjective imaging.



Publication History

Article published online:
07 October 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Memon K, Lewandowski RJ, Kulik L, Riaz A, Mulcahy MF, Salem R. Radioembolization for primary and metastatic liver cancer. Semin Radiat Oncol 2011; 21 (04) 294-302
  • 2 Simon N, Feitelberg S. Scanning bremsstrahlung of yttrium-90 microspheres injected intra-arterially. Radiology 1967; 88 (04) 719-724
  • 3 Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot 2007; 65 (03) 318-327
  • 4 Garin E, Tselikas L, Guiu B. et al; DOSISPHERE-01 Study Group. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6 (01) 17-29
  • 5 Rong X, Du Y, Ljungberg M, Rault E, Vandenberghe S, Frey EC. Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method. Med Phys 2012; 39 (05) 2346-2358
  • 6 Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ. Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med 1994; 35 (08) 1381-1389
  • 7 Ito S, Kurosawa H, Kasahara H. et al. (90)Y bremsstrahlung emission computed tomography using gamma cameras. Ann Nucl Med 2009; 23 (03) 257-267
  • 8 Minarik D, Sjögreen Gleisner K, Ljungberg M. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Phys Med Biol 2008; 53 (20) 5689-5703
  • 9 Mansberg R, Sorensen N, Mansberg V, Van der Wall H. Yttrium 90 Bremsstrahlung SPECT/CT scan demonstrating areas of tracer/tumour uptake. Eur J Nucl Med Mol Imaging 2007; 34 (11) 1887-1887
  • 10 Rong X, Du Y, Frey EC. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging. Phys Med Biol 2012; 57 (12) 3711-3725
  • 11 Strigari L, Sciuto R, Rea S. et al. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: radiobiologic considerations. J Nucl Med 2010; 51 (09) 1377-1385
  • 12 Ahmadzadehfar H, Muckle M, Sabet A. et al. The significance of bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects. Eur J Nucl Med Mol Imaging 2012; 39 (02) 309-315
  • 13 Siman W, Mikell JK, Kappadath SC. Practical reconstruction protocol for quantitative (90)Y bremsstrahlung SPECT/CT. Med Phys 2016; 43 (09) 5093-5103
  • 14 Lhommel R, Goffette P, Van den Eynde M. et al. Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging 2009; 36 (10) 1696-1696
  • 15 Bagni O, D'Arienzo M, Chiaramida P. et al. 90Y-PET for the assessment of microsphere biodistribution after selective internal radiotherapy. Nucl Med Commun 2012; 33 (02) 198-204
  • 16 Lhommel R, van Elmbt L, Goffette P. et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging 2010; 37 (09) 1654-1662
  • 17 Willowson KP, Tapner M, Bailey DL. QUEST Investigator Team. A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes after radioembolization with resin microspheres: The QUEST Phantom Study. Eur J Nucl Med Mol Imaging 2015; 42 (08) 1202-1222
  • 18 Dewaraja YK, Devasia T, Kaza RK. et al. Prediction of tumor control in 90Y radioembolization by logit models with PET/CT-based dose metrics. J Nucl Med 2020; 61 (01) 104-111
  • 19 Duan H, Khalaf MH, Ferri V. et al. High quality imaging and dosimetry for yttrium-90 (90Y) liver radioembolization using a SiPM-based PET/CT scanner. Eur J Nucl Med Mol Imaging 2021; 48 (08) 2426-2436
  • 20 Kunnen B, Beijst C, Lam MGEH, Viergever MA, de Jong HWAM. Comparison of the biograph vision and biograph mCT for quantitative 90Y PET/CT imaging for radioembolisation. EJNMMI Phys 2020; 7 (01) 14
  • 21 Pichler BJ, Kolb A, Nägele T, Schlemmer H-P. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 2010; 51 (03) 333-336
  • 22 Fowler KJ, Maughan NM, Laforest R. et al. PET/MRI of hepatic 90Y microsphere deposition determines individual tumor response. Cardiovasc Intervent Radiol 2016; 39 (06) 855-864
  • 23 Maughan NM, Eldib M, Faul D. et al. Multi institutional quantitative phantom study of yttrium-90 PET in PET/MRI: the MR-QUEST study. EJNMMI Phys 2018; 5 (01) 7
  • 24 Knešaurek K, Tuli A, Kim E, Heiba S, Kostakoglu L. Comparison of PET/CT and PET/MR imaging and dosimetry of yttrium-90 (90Y) in patients with unresectable hepatic tumors who have received intra-arterial radioembolization therapy with 90Y microspheres. EJNMMI Phys 2018; 5 (01) 23
  • 25 Elschot M, Vermolen BJ, Lam MGEH, de Keizer B, van den Bosch MAAJ, de Jong HWAM. Quantitative comparison of PET and bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS ONE 2013; 8 (02) e55742 DOI: 10.1371/journal.pone.0055742.
  • 26 Kubik A, Budzyńska A, Kacperski K. et al. Evaluation of qualitative and quantitative data of Y-90 imaging in SPECT/CT and PET/CT phantom studies. PLOS ONE 2021; 16 (02) e0246848 DOI: 10.1371/journal.pone.0246848.
  • 27 Takahashi A, Himuro K, Yamashita Y, Komiya I, Baba S, Sasaki M. Monte Carlo simulation of PET and SPECT imaging of 90Y. Med Phys 2015; 42 (04) 1926-1935