Keywords implant - knife-edge ridge - ridge expansion - piezoelectric - implant-supported prosthesis
- prosthetic complications
Introduction
Prosthetic rehabilitation of maxillary and mandibular thin partially edentulous ridge
areas represents a challenging procedure that is difficult to be restored by removable
prosthesis, tooth-supported fixed partial dentures, and implant-supported prosthesis.
Increasing the ridge width could be of value in improving prosthetic rehabilitation.
Ridge expansion techniques of thin ridges were used as a form of preprosthetic surgery
for improving the support of partial and complete dentures. However, with the introduction
of osseointegration concepts and implants, ridge expansion techniques became highly
recommended.[1 ]
In general, in order to ensure a successful outcome of implants, a minimum thickness
of 1 to 1.5 mm of bone should be present on both buccal and lingual/palatal aspects
of the implant(s), that is, a minimum of 6 to 7 mm bone width is required for placement
of an implant with a diameter of 3.5 to 4 mm.[2 ]
[3 ]
[4 ] Narrow alveolar ridges remain a severe challenge for placement of implants using
the prosthetic-driven concept rather than bone-driven one for successful prosthetic
rehabilitation regarding both the function and esthetics.[5 ]
[6 ]
Several approved techniques were introduced to overcome narrow ridge width, including
onlay bone grafts, horizontal guided bone regeneration, alveolar ridge expansion,
and alveolar ridge splitting of the edentulous ridge.[2 ]
[7 ]
[8 ] The principal disadvantage of onlay bone grafts is the invasiveness because of the
technique of bone harvesting from intraoral or extraoral sites, which increase the
morbidity with the risk of bone graft resorption.[9 ]
[10 ] The problems of normal guided bone regeneration include the risk of membrane exposure,
infection, and unpredictable rate of bone resorption after the reconstructive, regenerative
procedures and implant placement.[11 ]
[12 ] Also, the alveolar ridge expansion technique provides a gradual increase of the
ridge width and allows positioning of implants simultaneously, thus significantly
reducing treatment time. However, it is recommended only for soft bone quality (D3
and D4).[13 ]
[14 ]
[15 ]
[16 ] Alveolar ridge splitting/expansion technique (ARST) involves splitting the alveolar
ridge vertically with displacing buccal and lingual or palatal plates both in the
maxilla and the mandible, creating a middle gap, usually occupied mostly by the inserted
implants.[2 ]
[17 ]
[18 ] ARST with simultaneous placement of the dental implants arose a great interest in
the last years because of the reduction of morbidity (no bone harvesting, no risk
of membrane exposure, no risk of graft loss) and decreasing the postoperative swelling
and pain, increasing the patient cooperation for the surgery, eliminating the need
for a second surgical site as well as a second surgery, reduce the treatment cost,
and reduce the total treatment time.[2 ]
[19 ]
[20 ]
Several materials are used for prosthetic part construction. Trilor disk is one of
the computer-aided design and computer-aided manufacturing systems. It is a fiberglass
disc with a unique weave and epoxy resin that offers high performance. Trilor (fiber-reinforced
composites) is a new technopolymer consisting of a thermo-hardening resin and a multidirectional
reinforced with multidirectional fiberglass, which is used in racing cars, airplanes,
and many other fields where the demand for high toughness, low weight, and excellent
resistance to deformation are essential needs. Trilor is characterized by flexural
resistance of 540 MPa, flexural modulus 26 GPa, and density 1.8 g/cm3 .[21 ]
This study aimed to evaluate the success of the prosthetic rehabilitation of thin
wiry ridge and evaluate implants placed simultaneously in splitted ridge both clinically
and radiographically.
Material and Methods
Patient Selection
Twenty-one participants were enrolled of which 13 patients (8 females and 5 males)
were suffering from maxillary ridge atrophy and 8 patients (5 females and 3males)
had mandibular ridge atrophy with an average age of 20 to 45 years ([Fig. 1 ]) according to the following criteria: participants with a partially edentulous ridge
of 2 to 4 mm of initial alveolar crest width and sufficient height of at least 8 mm
from the crest of the alveolar ridge to the vital neighboring structures and good
oral hygiene. In contrast, the exclusion criteria were patients who smoke more than
10 cigarettes per day and patients with any systemic disease which directly affects
the bone metabolism and healing such as diabetes mellitus, osteoporosis, and periodontal
disease. All included participants agreed to have the treatment and signed the informed
consent. The study was approved by the Ethical Committee and adhered to the principles
of the Declaration of Helsinki.
Fig. 1 Preoperative view of both the maxilla and mandible.
Cone beam computed tomography was carried out for each patient to check the bone width,
available bone height, and determine the proposed implant site ([Fig. 2 ]). Alginate impressions were made, and a diagnostic wax-up was made on the study
cast to fabricate a vacuum stent to locate the proposed osteotomy sites during surgery.
Fig. 2 Cross-section of the proposed implant site.
Surgical Procedures
The surgical guide was disinfected by immersing it in 2% glutaraldehyde solution for
15 minutes. Patients received amoxicillin 2 g two hours before surgery. Local anesthesia
was given in the proposed implant sites. The surgical guide was placed, and an explorer
was used to mark the proposed implant sites. A lingual or palatal incision was made
extending 6 to 8 mm mesial and distal beyond the marked implant site. The incision
may extend to include the interdental papilla for the adjacent natural teeth in some
cases, and a vertical incision may be made according to each case. A split-thickness
flap was reflected. The surgical guide was placed again, and a round surgical bur
was used to mark the proposed sites for implant placement on the bony ridge.
The crestal osteotomy was made using the disk saw kit (small disk, large disk, mandrel
and expanders, and finger ratchet) (Precision Dental). The small disk (6 mm diameter)
was mounted within a straight handpiece and held perpendicular to the ridge, and rotated
under a copious amount of coolant for making the initial osteotomy of 3-mm depth;
then, the disk was replaced with larger disks 10.14 mm ([Fig. 3 ]). Ultrasonic flat chisel was used to cut the area adjacent to the natural teeth
and deepen the sagittal osteotomy as it should extend 5 to 7 mm in depth and 5 mm
beyond the proposed implant site and just away from the adjacent natural tooth by
1 mm.
Fig. 3 The splitted ridge.
Once the osteotomies were completed, one or more extension crest devices (ECDs) (ECD
consists of two surgical steel arms hinged and a transversal screw which allows a
progressive activation of the device). Every complete screw turn corresponds to an
activation of 0.5 mm. The maximum expansion obtainable with extension crests is 5 mm
(Precision Dental), and were placed through the crestal osteotomy between the buccal
and palatal/lingual plates according to the extension of the osteotomy and bone density
([Fig. 4A ]).
Fig. 4 (A ) Use of extension crest device. (B ) Use ridge expanders.
After each turn, a periodic pause allows the viscoelastic bone to adapt to the expansion
to avoid fracture of the thin buccal plate of bone where the number of activation
cycles is correlated to both bone density and surgical needs. After the required alveolar
crest expansion is obtained, basal bone drilling was performed by the pilot drill
(a double-level implant site preparation was performed at the basal bone level). The
screw expanders (Ridge expander kit, Dentium Co.) of sequential diameters (2.3, 2.8,
and 3.4 mm) were mounted into the finger ratchet and introduced to expand their corresponding
future implant site slowly as every 2-mm inserted of expander drill was usually followed
by 15 to 20 seconds of periodic pause giving the bone sufficient time for gradual
expansion, and then replaced with successive expanders of a larger diameter till the
proposed final implant size was achieved ([Fig. 4B ]). As the last expander was removed, the implant was placed immediately to prevent
the collapse of the expanded bone. The implant was installed in the osteotomy site
and rotated gradually subcrestal as much as we can or flushing with the bone ([Fig. 5 ]) (insertion torque 25 N/cm2 ), then another implant was placed parallel to the first one. The flap was repositioned
and sutured.
Fig. 5 (A) Implants are flushed with crest. (B ) Implants are placed subcrestal.
Postoperative care included cold packs applied for 20 minutes every hour for 6 hours
postoperatively. The patient was kept on a soft diet for the first 48 hours. The patient
was advised to rinse with chlorhexidine 0.12% twice a day for 10 days till suture
removal. At least 4 months were needed for bone healing in the mandible and 6 months
for the maxillary arch.
Prosthetic Procedures
Removable partial dentures were not allowed to be used during the first month in the
treated areas.[19 ] All implants were loaded with a fixed prosthesis (cement-retained). Healing abutments
were placed, and the soft tissue was allowed to heal for 1 week. Healing abutments
were replaced by the impression transfer (closed tray technique), and the final impression
was made using a rubber base (ZetaPlus, Zhermack SpA). The impression transfers were
unscrewed from the implants and connected to the implant analog, and placed within
the impression. Tissue mimic material was applied and the cast was poured by extra
hard stone. The final abutment replaced the impression transfer.
For Trilor fixed partial denture, the cast was scanned by a laboratory scanner to
obtain a Standard Tessellation Language file. Design of fixed partial denture was
carried out on dental software (Exocad, Darmstadt, Germany) ([Fig. 6 ]). After finishing the design, the framework was printed by a three-dimensional printer
(Mogassam Co. LLC) and tried intraoral for accuracy, adaptation, marginal fit, and
esthetics. The framework was milled from a Trilor disk of 98.5*23 mm (Trilor, Bioloren),
and veneering material was made from visio.lign and crea.lign (Bredent UK) and tried
intraoral for any modifications. Cementation of the final prosthesis was done using
temporary cement (Prevest Denpro Zinconol Dental Cement) for 2 weeks and later the
prosthesis was removed and the abutment screw retightened. Finally, the prosthesis
was cemented by glass ionomer (Medicem Promedica Dental Material GmbH) ([Fig. 7A ], [7B ]).
Fig. 6 Designing of the Trilor fixed partial denture.
Fig. 7 Final prosthesis cemented intraoral.
For porcelain fused to metal (PFM) fixed partial denture wax pattern was carried out.
Investing and casting of the wax pattern was done. The metal framework of the fixed
partial denture was checked for accuracy, adaptation, and marginal fit, then the firing
of the porcelain was done. Cementation of the final prosthesis was done using temporary
cement (Prevest Denpro Zinconol Dental Cement) for 2 weeks and later the prosthesis
was removed and the abutment screw retightened. Finally, the prosthesis is cemented
by glass ionomer (Medicem Promedica Dental Material GmbH) ([Fig. 7C ], [7D ]).
Evaluations
Implant success rate involving the following clinical parameters for success was suggested
by Albrektsson et al.[22 ]
Implant stability quotient (ISQ) was assessed by resonance frequency analysis (RFA)
using the Osstell apparatus (Osstell; Osstell AB). SmartPegs were attached to the
implants. For each implant, four readings were taken at the buccal, lingual, mesial,
and distal sides at the time of implant placement and loading. The average ISQ values
were calculated for all surfaces.[23 ]
[24 ]
Radiographic
examination : For ensuring standardization of measurements, digital radiographs were taken using
a long-cone paralleling technique at the time of implant insertion (T0), loading (TL),
and 12 months (T12) after prosthesis insertion. For each image, the distance from
the implant platform (A point) to the crestal bone level (B point) was calculated
(in mm) using the measuring tool of the software to indicate the vertical bone level
(X) in mm. X measurements were calibrated based on the known implant length to detect
magnification errors. Alveolar bone loss (ABL) was calculated by subtracting X at
TL and T12 from X at T0 and TL, respectively. ABL value was measured at the mesial
and distal surfaces of each implant, and the mean value was calculated.
Prosthetic evaluation : During follow-up for 1 year, the status of the prostheses was screened for the presence
of any complication (abutment screw loosening, abutment screw fracture, fracture of
veneer material, or loss of retention and decementation).
Results
The data were collected for all participants during follow-up with no dropout. All
implants ([Table 1 ]) met the modified Albrektsson et al criteria for success.[22 ]
Table 1
Implant dimension and position
3.6*10
3.6*8
Total
Maxillary
23
3
26
Mandibular
16
−
16
Total
39
3
42
Implants stability assessment : There was an increase in ISQ from implant placement till implant loading for all
implants with statistically significant difference (p < 0.0001) between values at insertion (44.5 ± 4.062) and loading (72.52 ± 2.734)
as well as a statistically significant increase (p < 0.0001, p < .0017) was observed in ISQ at insertion and loading for anterior implants in the
mandible (49 ± 2.7688, 74.83 ± 1.95) than anterior implants in the maxilla (40.75 ± 2.358,
71.25 ± 2.106), respectively ([Tables 2 ] and [3 ]). A statistically significant increase (p < 0.0047, p < 0.035) was observed in ISQ at insertion and loading for posterior implants in the
mandible (47.7 ± 1.552, 74.1 ± 2.7 73) than posterior implants in the maxilla (44.6 ± 2.615,
71.6 ± 2.107), respectively ([Tables 2 ] and [3 ]), and also a statistically significant increase (p < 0.0001, p < 0.0002) was observed in ISQ at insertion and loading for implants in the mandible
(48.18 ± 2.185, 74.37 ± 2.521) than implants in the maxilla (42.23 ± 3.0922, 71.38 ± 2.113),
respectively ([Tables 2 ] and [3 ]). There is a statistical significance difference (p < 0.0087) between anterior implants (43 ± 4.431) and posterior implants (46.15 ± 2.650)
at insertion ([Tables 2 ] and [3 ]). A statistically significant increase (p < 0.0087, p < 0.0266) was observed in ISQ at insertion for posterior implants (46.15 ± 2.650)
than anterior implants (43 ± 4.431) as well as between implants in male (46.75 ± 4.057)
and implants in female (43.88 ± 3.84), respectively ([Tables 2 ] and [3 ]).
Table 2
The mean and standard deviation of Osstell reading (ISQ) at implant placement and
loading
Place of implants
Anterior maxilla
Posterior maxilla
Total maxilla
Anterior mandible
Posterior mandible
Total mandible
Total anterior
Total posterior
Male
Female
No of implants
16
10
26
6
10
6
22
20
16
26
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Installation
40.75
2.3584953
44.6
2.6153394
42.23
3.0922694
49
2.7688746
47.7
1.5524175
48.18
2.1857136
43
4.4312937
46,15
2.6509432
46,75
4.057
43.88
3.84
Loading
71.25
2.106
71.6
2.107
71.38
2.113
74.83
1.95
74.1
2.773
74.37
2.521
72.22
2.609
72.85
2.761
73.125
2.77
71.73
2.272
Abbreviations: ISQ, implant stability quotient; SD, standard deviation.
a Significant at p ≤ 0.05.
Table 3
The comparison of Osstell reading (ISQ) at implant placement and loading
Anterior
maxilla vs. ant mandible
Posterior maxilla vs. post mandible
Maxilla vs. mandible
Total anterior vs. total posterior
Total implants in male vs. females
Difference
Standard error
95% CI
p -Value
Difference
Standard error
95% CI
p -Value
Difference
Standard error
95% CI
p -Value
Difference
Standard error
95% CI
p -Value
Difference
Standard error
95% CI
p -Value
Installation
8.250
1.181
10.7134 to 5.7866
0.0001[a ]
3.1
0.962
1.0797 to 5.1203
0.0047[a ]
5.950
0.885
7.7386 to 4.1614
0.0001[a ]
3.15
1.141
0.8436 to 5.4564
0.0087[a ]
2.870
1.246
5.3892 to –0.3508
0.0266+
Loading
3.580
0.990
1.5148 to 5.6452
0.0017[a ]
2.500
1.101
0.1878 to 4.8122
0.0356[a ]
2.990
0.723
1.5293 to 4.4507
0.0002[a ]
0.630
0.829
1.0449 to 2.3049
0.4516
1.395
0.786
2.9834 to 0.1934
0.0835
Abbreviations: CI, confidence interval; ISQ, implant stability quotient.
a Significant at p ≤ 0.05.
ABL assessment : Thirty implants were placed subosseous while 12 placed flushing with crestal bone
margins. All implants showed a higher mean bone loss from T0 to TL (1.259 ± 0.3020)
than from TL to T12 (0.505 ± 0.163) with a statistically significant difference (p < 0.0001). A statistically significant increase (p < 0.0306) in the mean of ABL was observed in anterior implants in the maxilla (0.618 ± 0.120)
than anterior implants in the mandible (0.2466 ± 0.634) from TL to T12 ([Tables 4 ] and [5 ]). A statistically significant increase (p < 0.0001) in the mean of ABL was observed for implants in the maxilla (0.581 ± 0.123)
than implants in the mandible (0.382 ± 0.139) from TL to T12 ([Tables 4 ] and [5 ]). A statistically significant increase (p < 0.0017) in the mean of ABL was observed for all anterior implants (1.39 ± 0.321)
than all posterior implants (1.115 ± 0.13982) from T0 to TL ([Tables 4 ] and [5 ]). A statistically significant increase (p < 0.0045) in the mean of ABL was observed for implants in the female participants
(0.583 ± 0.170) than male participants (0.435 ± 0.145) from TL to T12 ([Tables 4 ] and [5 ]).
Table 4
The mean and standard deviation of alveolar bone loss at implant loading and after
1 year
Anterior maxilla
Posterior
maxilla
Total maxilla
Anterior mandible
Posterior mandible
Total mandible
Total anterior
Total posterior
Female
Male
Implants no.
16
10
26
6
10
16
22
20
26
16
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mean
SD
T0/T1
1.35625
0.351
1.105
0.169
1.2596154
0.31956077
1.4833333
0.195
1.125
0.193
1.259375
0.26053955
1.39
0.321797
1.115
0.1824
1.184
0.211
1.228
0.407
Loading
0.618125
0.120
0.541
0.0858
0.58115385
0.12336085
0.24666667
0.634
0.464
0.10403
0.3825
0.13908181
0.516
0.1975391
0.493
0.107
0.583
0.170
0.435
0.145
Abbreviation: SD, standard deviation.
a Significant at p ≤ 0.05.
Table 5
The comparison of alveolar bone loss at implant loading and after 1 year
Anterior maxilla vs. anterior mandible
Posterior maxilla vs. posterior mandible
Maxilla vs. mandible
Total anterior vs. total posterior
Male vs. female
Difference
Standard error
95% CI
p -Value
Difference
Standard error
95% CI
p -Value
Difference
Standard error
95% CI
p -Value
Difference
Standard error
95% CI
p -Value
Difference
Standard error
95% CI
p -Value
0.127
0.153
0.1917 to 0.4459
0.4155
0.020
0.081
0.1504 to 0.1904
0.808
0.00
0.095
0.1921 to 0.1916
0.998
0.275
0.082
–0.4404 to –0.1096
0.0017
0.044
0.110
–0.1787 to 0.2667
0.6917
0.371
0.160
0.7046 to –0.0383
0.0306[a ]
0.077
0.043
0.1666 to 0.0126
0.0877
0.199
0.041
0.2818 to –0.1155
0.0001[a ]
0.023
0.050
0.1235 to 0.0775
0.646
0.148
0.049
–0.2474 to –0.0486
0.0045
Abbreviation: CI, confidence interval.
a Significant at p ≤ 0.05.
Prosthetic complications : Implant-supported prosthesis was involved in this study. Prosthetic complications
were loosening of screw/abutment in 8 patients (38%) within the first 6 months of
prosthetic service and 2 patients (9.5%) at second 6 months, while no ceramic fracture,
no framework/occlusal material fracture, no screw fracture, and decementation occurred
in 1 patient (4.7%).
Surgical complications : Buccal plates cracked at two implant sites (4.7%) in the mandible. Swelling and
edema were observed postoperatively in 6 cases (28.5%) and disappeared within 3 days
from surgery and finally transient paresthesia (1 case: 4.7%) and disappeared within
2 weeks.
Discussion
ARST represents an effective and validated form of expansion technique for narrow
ridges with simultaneous implants placement with a survival rate of 97.4 to 100%,
and the success rates of implants are comparable to implants placed in bone without
ARST which matches with our study success and survival rate.[9 ]
[23 ]
[24 ]
[25 ]
[26 ]
Classic ridge-splitting procedures involve razor-sharp bone chisels, rotating, oscillating
saws, or saw disc. The use of bone chisel traumatizes the bone and could stress the
patient during surgery, it is time-consuming and require complex technical skills
to be managed efficiently. Rotating and oscillating instruments are safer, less threatening
for the patient, better control during cutting along a narrow alveolar ridge, and
appear less traumatic to the bone. Additionally, less bone is lost because the micro-saw
creates much thinner cuts than conventional burs while reducing the risk of encroaching
the gingiva, the lips, or the tongue, limiting their accessibility and complicating
the procedure.[6 ]
[10 ]
[16 ] Ultrasonic device produces easier, safer, and more precise cut. It allows curved
cuts that are impossible with rotator or oscillating saws,[27 ] providing good visibility in the surgical field, reducing the psychological stresses
on patients under local anesthesia, with no risk of injury to soft tissue, and also
reduce the risk of complications in the treatment of extremely atrophic crests; however,
its time consuming.[6 ]
[10 ]
[27 ]
[28 ]
[29 ]
[30 ]
[31 ]
[32 ] Thus, the combination of using rotating saws and piezoelectric instrument facilitates
the ARST procedures and gain the advantages of both instruments.
A systematic review by Milinkovic and Cordaro and a meta-analysis by Elnayef et al
evaluated the different alveolar bone augmentation procedures for implant placement.
They found that the alveolar crest-split technique had minimal technical complications
and a high implant survival rate.[33 ]
[34 ] While the main complication of ARST was reported to fracture the buccal bone, which
is increased with the narrower ridge of less than 1 mm buccal and lingual cortical
plates.[12 ]
[33 ]
[34 ]
[35 ]
[36 ] Buccal wall fracture was reported in some studies to reach up to 14.0%.[35 ] However, in this study, no fracture occurred, only cracks appeared at the buccal
plate at two implant sites in the mandible, this could be attributed to the presence
of highly dense bone and little cancellous in the arch.[37 ] Decreasing the complication associated with ARST may be attributed to the distribution
of expansion forces by ECD, sufficient time, and multiple pauses between each turn
of the expansion device to overcome the resistance during the expansion of the buccal
cortical plate, thus decreasing the risk of fracture. In addition, the minimal included
ridge width was 2.0 mm at the crest of the ridge.[2 ]
[35 ]
[38 ] A systematic review reported that the failure rate is more likely if implants are
loaded within a period shorter than 3 months.[23 ] The dental implants in this study were loaded at 4 months for the mandible and 6
months for the maxilla.[35 ] Moreover, splinting of dental implants would decrease the stresses on each implant.[20 ]
[24 ]
The use of a split-thickness flap was significant as the periosteum should not be
stripped off from the buccal bone plate, affecting the blood supply and allowing rapid
revascularization of the expanded bony plate. The expanded segments with elevated
periosteum will undergo resorption because of the lack of nourishment, particularly
for the thin buccal cortex, followed by implant thread exposure.[39 ] The periosteum has another function in treating the minute fractures that might
occur during the splitting procedure[40 ]
[41 ]
[42 ] and decreasing the percentage of bone loss by 9.5% for the buccal bone plate, 7.9%
for the palatal bone plate, and 3.5% for the mesiodistal bone plate as reported by
Mounir et al.[43 ] While disadvantages of the partial flap are excessive bleeding, resulting in lousy
visualization of the surgical sites.[6 ]
The use of expanders allowed blunt lateralization of the buccal cortex during expansion,
thus decreasing the risk of fractures and heating during drilling. It increases bone
quality surrounding the implant due to the compression of the spongiosa at the sidewalls
of the osteotomy site without any bone removal.[43 ] Double-level implant site preparation allowed proper primary stability with the
required expansion, which was frequently difficult to obtain with traditional split
crest techniques.[39 ]
With palatal or lingual incision, the buccal plate is preserved by placing the incision
to the palatal or lingual sides where the cortical plates are thicker and resistant
to resorption.[39 ] The extended osteotomy beyond the proposed implant site allowed the plates to expand
or bow during the preparation of the osteotomy preparation and implant insertion,
and periodic pauses allowed the viscoelastic bone to adapt to the expansion.[6 ] The osteotomy gap was between 3 and 5 mm, which was left to be filled with the organized
blood clot to be replaced by woven bone, allowing normal wound healing resembling
an extraction socket and fracture repair that heal by secondary intension without
the need for bone grafting or using guided regenerative techniques.[6 ]
[44 ]
[45 ]
The use of RFA was beneficial in providing clinical evidence about implant-bone interface
during the phases of treatment,[37 ] where the acceptable stability range, based on many studies made with RFA, lies
between 55 and 85 ISQ with an average ISQ level of 70.[46 ]
[47 ] In the present study, the mean ISQ value at insertion was 44.5 ± 4.062 and loading
was 72.52 ± 2.734. These results indicated a valuable improvement of the implant's
stability which is the main goal for achieving successful osseointegration. The lower
ISQ values measured at implant insertion explain the surrounding area where implants
were placed in a gap filled with blood clot and minimal implant surface being anchored
in bone; later on, a significant increase in the ISQ values was observed at 4 to 6
months, denoting the ability to load implants.[48 ] Several studies have demonstrated the correlation between bone quality and ISQ values,
and it appears that the stiffness of the implant-bone interface increases as the peri-implant
bone becomes denser during the healing and remodeling process.[33 ]
[34 ]
[35 ]
[48 ]
The reported success rates of implants placed with ARST were comparable with those
placed in bone without ARST. However, the few available and included data indicated
that a slightly more pronounced marginal bone loss could be expected than implants
placed in bone without ARST.[3 ] The crestal bone loss that occurs secondary to the ridge-splitting technique is
a serious obstacle to the success of the operation and remains the challenging feature
of that procedure,[43 ] which was reflected by the radiographic results as most of the ABL occurred at first
4 to 6 months before loading regardless the anatomical position of placed implants
or the quality of bone. In this study, placing most of the implants (30 implants)
subossous help decreasing the postoperative ABL as the ABL was 1.259 ± 0.3020 mm.
However, since some implants were initially placed subcrestal, the net final ABL from
the implant platform was 0.775 ± 0.3185 mm, where the average reported crestal bone
loss was between 0.8 and 2.0 mm, and in a study by González-García et al the mean
ABL was 0.542 mm.[48 ]
[49 ] Nevertheless, after loading, the only significant differences were between implants
in the anterior maxilla and anterior mandible and between implants in the maxilla
and mandible. The better quality of bone denotes less bone resorption and better implant
osseointegration, as proved with implant stability by Osstell.
The main prosthetic complications of implant-supported restorations were the screw
loosening, framework or occlusal material fracture, screw fracture, and decementation.[50 ] Although abutment screw loosening is one of the most frequent prosthetic complications
that has been associated with the ARST,[34 ] a study by Garcez-Filho et al observed that 6 of 8 complications were due to abutment
screw loosening.[51 ] In this study, 8 of 9 complications were due to abutment screw loosening.
In this study, using anterior fixed partial dentures of Trilor and posterior one of
PFM did not affect stress distribution and stress values at the bone tissue surrounding
the implant.[52 ]
[53 ] However, Türk et al mentioned that different materials transmit different stress
to the underlying structures.[54 ]
The main limitations of the present study are the small sample size and short follow-up
duration as the study was continued for 12 months for serving as prosthetic abutments,
which represent the least period to evaluate the implant success,[20 ] and its recommended to place grafting materials to decrease the ABL as the ABL is
considered an obstacle for the success of implants in splitted ridge.
Conclusion
This study supports the efficacy of prosthetic rehabilitation of thin wiry ridge using
split ridge technique and the success of implants placed simultaneously in splitted
ridge.