Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(20): 2396-2400
DOI: 10.1055/s-0041-1738437
DOI: 10.1055/s-0041-1738437
cluster
Special Issue Dedicated to Prof. Hisashi Yamamoto
Synthesis of (2-Nitro-1-AfAlemphenylethyl)malononitriles by Michael Addition of Masked Acyl Cyanides to Nitroalkenes
This work was supported by the Academic Promotion Program of Shandong First Medical University (NO. 2019LJ003), the Natural Science Foundation of China (No. 22101156), the Natural Science Foundation of Shandong Province (ZR2022QB069, ZR2021QB038) and the Natural Science Foundation for Distinguished Young Scholars of Shandong Province (Overseas) (2022HWYQ-008).
Abstract
A highly efficient method has been developed for the synthesis of (2-nitro-1-phenylethyl)malononitriles through a Michael addition reaction between substituted nitroolefins and masked acyl cyanide reagents, serving as carbon monoxide equivalents. Under mild conditions, the reaction took place with excellent yields (90–98%), providing a short entry into a series of the title compounds in a scalable fashion. An asymmetric version of this reaction has also been briefly explored.
Key words
Umpolung - masked acyl cyanides - nitroalkenes - Michael addition reaction - malononitriles - asymmetric catalysisPublication History
Received: 14 February 2023
Accepted after revision: 12 April 2023
Article published online:
08 May 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Wittig G, Davis P, Koenig G. Chem. Ber. 1951; 84: 627
- 1b Seebach D, Enders D. Angew. Chem. Int. Ed. 1975; 14: 15
- 1c Seebach D. Angew. Chem. Int. Ed. 1979; 18: 239
- 1d Smith AB, Adams CM. Acc. Chem. Res. 2004; 37: 365
- 1e Brehme R. Eur. J. Org. Chem. 2007; 34: 5629
- 1f Wang S, König B. Angew. Chem. Int. Ed. 2021; 60: 21624
- 1g Kolesinska B, Kaminski ZJ. Tetrahedron 2009; 65: 3573
- 1h Shen H, Li J, Liu Q, Pan J, Huang R, Xiong Y. J. Org. Chem. 2015; 80: 7212
- 2a Smith AB, Adams CM. Acc. Chem. Res. 2004; 37: 365
- 2b Brehme R, Enders D, Fernandez R, Lassaletta JM. Eur. J. Org. Chem. 2007; 5629
- 2c Evans PA, Oliver S, Chae J. J. Am. Chem. Soc. 2012; 134: 19314
- 2d Evans PA, Oliver S. Org. Lett. 2013; 15: 5626
- 3a Nemoto H, Ma R, Moriguchi H, Suzuki I, Shibuya M. J. Org. Chem. 2000; 611: 445
- 3b Nemoto H, Kawamura T, Miyoshi N. J. Am. Chem. Soc. 2005; 127: 14546
- 3c Nemoto H, Ma R, Kawamura T, Kamiya M, Shibuya M. J. Org. Chem. 2006; 71: 6038
- 3d Roche SP, Faure S, Aitken DJ. Angew. Chem. Int. Ed. 2008; 47: 6840
- 3e Nemoto H, Kawamura T, Kitasaki K, Yatsuzuka K, Kamiya M, Yoshioka Y. Synthesis 2009; 1694
- 3f Yamatsugu K, Kanai M, Shibasaki M. Tetrahedron 2009; 65: 6017
- 3g Kagawa N, Nibbs AE, Rawal VH. Org. Lett. 2016; 18: 2363
- 3h Hethcox JC, Shockley SE, Stoltz BM. Org. Lett. 2017; 19: 1527
- 3i Shockley SE, Hethcox JC, Stolz BM. Angew. Chem. Int. Ed. 2017; 56: 11545
- 3j Esgulian M, Buchotte M, Guillot R, Deloisy S, Aitken DJ. Org. Lett. 2019; 21: 2378
- 3k Adamson NJ, Park S, Zhou P, Nguyen AL, Malcolmson SJ. Org. Lett. 2020; 22: 2032
- 3l He X, Buchotte M, Guillot R, Deloisy S, Aitken DJ. Org. Biomol. Chem. 2022; 20: 1769
- 4a Yang KS, Nibbs AE, Türkmen YE, Rawal VH. J. Am. Chem. Soc. 2013; 135: 16050
- 4b Yang KS, Rawal VH. J. Am. Chem. Soc. 2014; 136: 16148
- 4c Zhao K, Zhi Y, Wang A, Enders D. Synthesis. 2018; 50: 872
- 5a Barrett AG. M, Graboski GG. Chem. Rev. 1986; 86: 751
- 5b Berner OM, Tedeschi L, Enders D. Eur. J. Org. Chem. 2002; 1877
- 5c Halimehjani AZ, Namboothiri IN. N, Hooshmand SE. RSC Adv. 2014; 4: 48022
- 6a Mora-Ochomogo M, Lohans CT. RSC Med. Chem. 2021; 12: 1623
- 6b Zhang D, Chen X, Zhang R, Yao P, Wu Q, Zhu D. ACS Catal. 2015; 5: 2220
- 6c Nanjo T, Zhang X, Tokuhiro Y, Takemoto Y. ACS Catal. 2019; 9: 10087
- 7 (2-Nitro-1-phenylethyl)malononitriles 3a–p; General Procedure A 10 mL glass tube equipped with a stirrer bar was charged with 1 (0.5 mmol, 1.0 equiv), 2 (75.7 mg, 0.6 mmol, 1.2 equiv), and DCM (2.5 mL). Catalyst A (0.1 mmol, 10 mol%) was added, and the mixture was stirred at r.t. for 12 h, then directly purified by column chromatography (silica gel). (Methoxymethyl)(2-nitro-1-phenylethyl)malononitrile (3a) White solid; yield: 135 mg (98%); mp154–156 °C. 1H NMR (400 MHz, CDCl3): δ = 7.48–7.39 (m, 5 H), 5.09 (dd, J = 13.2, 8.8 Hz, 1 H), 5.06 (s, 2 H,), 4.95 (dd, J = 13.2, 5.6 Hz, 1 H), 4.31 (dd, J = 8.8, 5.6 Hz, 1 H), 3.50 (d, J = 1.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 130.4, 130.0, 129.5 (2 C), 129.3 (2 C), 111.6, 111.2, 96.9, 74.2, 68.6, 57.7, 51.5. ESI-HRMS: m/z [M + H]+ calcd for C13H14N3O4: 276.0984; found: 276.0980.
- 8 CCDC 2205805 contains the supplementary crystallographic data for compound 3a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
For representative reviews, see:
For selected examples, see:
For selected examples, see:
For selected reviews, see:
For a recent review, see:
For selected examples, see: