Synlett, Table of Contents Synlett 2023; 34(16): 1925-1929DOI: 10.1055/s-0041-1738442 letter Iodine-Catalyzed Simple and Efficient Synthesis of 1,3,5-Triarylbenzenes and 2,3-Dihydrobenzofuran Derivatives under Mild Reaction Conditions Dong Cheng , Xiangzhen Meng∗ , Dongmei Li , Sunying Jie , Yifan Liu , Xiaoqing Jiao Recommend Article Abstract Buy Article All articles of this category Abstract The I2-catalyzed cyclization reaction of chalcones and 2-aryl propionaldehydes or isobutyraldehyde has been developed for the synthesis of 1,3,5-triarylbenzenes and 2,3-dihydrobenzofuran derivatives. This reaction tolerates a wide range of functional groups. Moreover, this method features an inexpensive catalyst and available starting materials. Key words Key words1,3,5-triarylbenzenes - 2,3-dihydrobenzofuran scaffolds - chalcone - annulation - I2 Full Text References References and Notes 1a Alfuth J, Chojnacki J, Połoński T, Herman A, Milewska MJ, Olszewska T. Cryst. Growth Des. 2022; 22: 3493 1b Taddei M, Costantino F, Vivani R, Sabatini S, Lim SH, Cohen SM. Chem. Commun. 2014; 50: 5737 1c Krieck S, Görls HG, Westerhausen M. J. Am. Chem. Soc. 2010; 132: 12492 1d Dash BP, Satapathy R, Gaillard ER, Maguire JA, Hosmane NS. J. Am. Chem. Soc. 2010; 132: 6578 1e Bao C, Lu R, Jin M, Xue P, Tan C, Xu T, Liu G, Zhao Y. Chem. Eur. J. 2006; 12: 3287 1f Shirota Y. J. Mater. Chem. 2005; 15: 75 1g Tour JM. Chem. Rev. 1996; 96: 537 2a Matt Y, Wessely I, Gramespacher L, Tsotsalas M, Bräse S. Eur. J. Org. Chem. 2020; 239 2b Siddaraju Y, Prabhu KR. Org. Biomol. Chem. 2015; 13: 6749 2c Wang Q, Zhang C, Noll BC, Long H, Jin Y, Zhang W. Angew. Chem. Int. Ed. 2014; 53: 10663 2d Khotina IA, Consonni R, Kushakova NS, Porzio W, Giovanella U, Kovalev AI, Babushkina MA, Peregudov AS, Destri S. Eur. Polym. J. 2013; 49: 4224 3a Xiao X, Luo J, Gan Z, Jiang W, Tang Q. RSC Adv. 2020; 10: 12113 3b Phatangare K, Padalkar V, Mhatre D, Patil K, Chaskar A. Synth. Commun. 2009; 39: 4117 3c Wagh GD, Akamanchi KG. Tetrahedron Lett. 2017; 58: 3032 3d Han J, Guo X, Liu Y, Fu Y, Yan R, Chen B. Adv. Synth. Catal. 2017; 359: 2676 3e Zhang X, Wang Z, Xu K, Feng Y, Zhao W, Xu X, Yan Y, Yi W. Green. Chem. 2016; 18: 2313 3f Boroujeni MB, Hashemzadeh A, Faroughi M.-T, Shaabani A, Amini MM. RSC Adv. 2016; 6: 100195 3g Jing XB, Xu F, Zhu QH, Ren XF, Yan CG, Wang L, Wang JR. Synth. Commun. 2006; 35: 3167 3h Sato T, Ono F, Ishikura Y, Tada Y, Endo M. Synlett 2008; 2365 4a Yang K, Wang P, Sun ZY, Guo M, Zhao W, Tang X, Wang G. Org. Lett. 2021; 23: 3933 4b Galiana-Cameo M, Passarelli V, Pérez-Torrente JJ, Di Giuseppe A. Eur. J. Inorg. Chem. 2021; 2947 4c Doll JS, Eichelmann R, Hertwig LE, Bender T, Kohler VJ, Bill E, Wadepohl H. ACS Catal. 2021; 11: 5593 4d Gawali SS, Gunanathan C. J. Organomet. Chem. 2019; 881: 139 4e Chakraborty U, Demeshko S, Meyer F, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2019; 58: 3466 4f Xu YL, Pan YM, Wu Q, Wang HS, Liu PZ. J. Org. Chem. 2011; 76: 8472 4g Perrone S, Bona F, Troisi L. Tetrahedron 2011; 67: 7386 5a Reimann S, Ehlers P, Sharif M, Spannenberg A, Langer P. Tetrahedron 2016; 72: 1083 5b Isfahani AL, Mohammadpoor-Baltork I, Mirkhani V, Khosropour AR, Moghadam M, Tangestaninejad S, Kia R. Adv. Synth. Catal. 2013; 355: 957 5c Xu X.-H, Azuma A, Kusuda A, Tokunaga E, Shibata N. Eur. J. Org. Chem. 2012; 1504 5d Pena MA, Perez I, Perez Sestelo J, Sarandeses LA. Chem. Commun. 2002; 2246 5e Córsico EF, Rossi RA. Synlett 2000; 230 5f Zhao F, Zhang Y.-F, Wen J, Shi Z.-J, Yu D.-G, Wei J.-B, Xi Z. Org. Lett. 2013; 15: 3230 6a Saha A, Wu C.-M, Peng R, Koodali R, Banerjee S. Eur. J. Org. Chem. 2019; 104 6b Zhang CL, Zhang ZF, Xia ZH, Han YF, Ye S. J. Org. Chem. 2018; 83: 12507 6c Kim TY, Kim HS, Lee KY, Kim JN. Bull. Korean Chem. Soc. 1999; 20: 1255 6d Kim TY, Kim HS, Lee KY, Kim JN. Bull. Korean Chem. Soc. 2000; 21: 521 6e Zhang CL, Ye S. Org. Lett. 2016; 18: 6408 6f Deng K, Huai QY, Shen ZL, Li HJ, Liu C, Wu YC. Org. Lett. 2015; 17: 1473 7 Sarkar D, Ghosh MK. Tetrahedron Lett. 2017; 58: 4336 8 Chen CY, Weisel M. Synlett 2013; 24: 189 9a Trost BM, Thiel OR, Tsui H.-C. J. Am. Chem. Soc. 2003; 125: 13155 9b Funayama S, Ishibashi M, Komiyama K, Omura S. J. Org. Chem. 1990; 55: 1132 10a Fang Z, Zhang Y, Guo Y, Jin Q, Zhu H, Xiu H, Liu Z, Wang Y. New. J. Chem. 2022; 46: 1812 10b Zhou S, Cai B, Hu C, Cheng X, Li L, Xuan J. Chin. Chem. Lett. 2021; 32: 2577 10c Jing ZR, Liang DD, Tian JM, Zhang FM, Tu YQ. Org. Lett. 2021; 23: 1258 10d Tian WF, Zhu Y, He YQ, Wang M, Song XR, Bai J, Xiao Q. Adv. Synth. Catal. 2020; 363: 730 10e Sheppard TD. J. Chem. Res. 2011; 377 10f Wu C, Cheng H.-G, Chen R, Chen H, Liu Z.-S, Zhang J, Zhang Y, Zhu Y, Geng Z, Zhou Q. Org. Chem. Front. 2018; 5: 2533 11 General Procedure for the Synthesis of 1,3,5-Triarylbenzenes Chalcones 1 (0.5 mmol), 2-phenylpropanal 2 (5.0 mL), and I2 (38.1 mg, 0.25 mmol) were loaded into a 10 mL sealed tube. The reaction mixture was stirred at 110 ℃. After completion, the reaction was quenched by the addition of saturated aqueous Na2S2O3 (15 mL) and extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed with H2O (20 mL) and brine (20 mL), dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (200–300 mesh) using PE/dichloromethane to give the product. 5′-Phenyl-1,1′:3′,1′′-terphenyl (3a) White solid; 1H NMR (500 MHz, CDCl3): δ = 7.79 (s, 3 H), 7.74–7.67 (m, 6 H), 7.48 (t, J = 7.6 Hz, 6 H), 7.44–7.32 (m, 3 H). 13C NMR (126 MHz, CDCl3): δ = 142.4, 141.2, 128.9, 127.6, 127.4, 125.2. 12 Chalcones 1 (0.5 mmol), isobutyraldehyde 2 (5.0 mL), and I2 (63.3 mg, 0.25 mmol) were loaded into a 20 mL sealed tube. The reaction mixture was stirred at 100 ℃ for 12 h. After completion, the reaction was quenched by the addition of saturated aqueous Na2S2O3 (15 mL) and extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with H2O (20 mL) and brine (20 mL), dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (200–300 mesh) using PE/Et2O to give the product. 2-Isopropyl-3,3-dimethyl-4,6-diphenyl-2,3-dihydrobenzofuran (4a) White solid; mp 157–163 ℃. 1H NMR (400 MHz, CDCl3): δ = 7.44–7.36 (m, 10 H), 6.66 (s, 1 H), 3.92 (d, J = 6.4 Hz, 1 H), 2.28 (s, 3 H), 2.21‒2.15 (m, 1 H), 1.25 (s, 3 H),1.22 (d, J = 4.4 Hz, 3 H), 1.17 (s, 3 H), 1.09 (d, J = 4.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 157.0, 141.4, 141.1, 140.8, 136.7, 132.9, 129.7, 129.5, 128.0, 127.5, 127.0, 126.7, 124.5, 116.5, 97.4, 45.5, 29.2, 27.4, 22.7, 20.7, 20.0, 12.9. IR (thin film): 3054, 3032, 2976, 2896, 1568, 1474, 1392, 985, 763. HRMS (ESI): m/z calcd for C26H29O [M + H]+: 357.2213; found: 357.2207. 13 CCDC 22232941 (4b) and CCDC 2232940 (4i) contain the supplementary crystallographic data for this paper. These data can be obtained free charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. Supplementary Material Supplementary Material Supporting Information