Subscribe to RSS
DOI: 10.1055/s-0042-104418
Pharmacological and Toxicological Studies of Essential Oil of Lavandula stoechas subsp. luisieri
Publication History
received 05 April 2015
revised 19 February 2016
accepted 29 February 2016
Publication Date:
28 April 2016 (online)
Abstract
The present study was carried out to evaluate the chemical and pharmacological properties of the essential oil of Lavandula stoechas subsp. luisieri, which is a spontaneous shrub widespread in Alentejo (Portugal). Oxygenated monoterpenes, such as 1,8-cineole, lavandulol, and necrodane derivatives, are the main components of essential oil. It revealed important antioxidant activity with a high ability to inhibit lipid peroxidation and showed an outstanding effect against a wide spectrum of microorganisms, such as gram-positive and gram-negative bacteria and pathogenic yeasts. The analgesic effect studied in rats was dose dependent, reaching a maximum of 67 % at 60 min with the dose of 200 mg/kg and the anti-inflammatory activity with this dose caused an inhibition in carrageenan-induced rat paw oedema (83 %) that is higher than dexamethasone 1 mg/Kg (69 %). Besides, animals exhibited normal behaviour after essential oil administration, revealing low toxicity. The essential oil of L. luisieri from Alentejo presents important pharmacological properties and low toxicity, and is a promised candidate to be used as a food supplement or in pharmaceutical applications.
-
References
- 1 Cavanagh HMA, Wilkinson JM. Lavender essential oil: a review. Aust Infect Control 2005; 10: 35-37
- 2 Upson TM, Andrews S. The Genus Lavandula. London, UK: The Royal Botanical Gardens; 2004
- 3 Amaral Franco J. Nova flora de Portugal (Continente e Açores). II. Clethraceae – Compositae. Lisboa, Portugal: Sociedade Astória; 1984
- 4 Morales R, Quintanar A, Cabezas F, Pujadas AJ, Cirujano S. Flora Iberica 12. Verbenaceae – Labiatae – Callitrichaceae. Madrid: Real Jardin Botánico, CSIC; 2010
- 5 Baldovini N, Lavoine-Hanneguelle S, Ferrando G, Dusart G, Lizzani-Cuvelier L. Necrodane monoterpenoids from Lavandula luisieri . Phytochemistry 2005; 66: 1651-1655
- 6 Angioni A, Barra A, Coroneo V, Dessi S, Cabras P. Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J Agric Food Chem 2006; 54: 4364-4370
- 7 Lavoine-Hanneguelle S, Casabianca H. New Compounds from the essential oil and absolute of Lavandula luisieri L. J Essent Oil Res 2004; 16: 445-448
- 8 González-Coloma A, Delgado F, Rodilla JM, Silva L, Sanz J, Burillo J. Chemical and biological profiles of Lavandula luisieri essential oils from western Iberia Peninsula populations. Biochem Syst Ecol 2011; 39: 1-8
- 9 Roach B, Eisner T, Meinwald J. Defense mechanisms of arthropods. 83. α- and β-necrodol, novel terpenes from a carrion beetle (Necrodes surinamensis, Silphidae, Coleoptera). J Org Chem 1990; 55: 4047-4051
- 10 Zuzarte M, Gonçalves MJ, Cavaleiro C, Dinis AM, Canhoto JM, Salgueiro LR. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav. Chem Biodivers 2009; 6: 1283-1292
- 11 Zuzarte M, Gonçalves MJ, Cruz MT, Cavaleiro C, Canhoto J, Vaz S, Pinto E, Salgueiro L. Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem 2012; 135: 1505-1510
- 12 Matos F, Miguel MG, Duarte J, Venancio F, Moiteiro C, Correia AID, Figueiredo AC, Barróse JG, Pedro LG. Antioxidant capacity of the essential oils from Lavandula luisieri, L. stoechas subsp. lusitanica, L. stoechas subsp. lusitanica x L. luisieri and L. viridis grown in Algarve (Portugal). J Essent Oil Res 2009; 21: 327-337
- 13 Choi HS, Song HS, Ukeda H, Sawamura M. Radical-scavenging activities of citrus essential oils and their components: detection using 1,1-diphenyl-2-picrylhydrazyl. J Agric Food Chem 2000; 48: 4156-4161
- 14 Hussain AI, Anwar F, Sherazi STH, Przybylski R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem 2008; 108: 986-995
- 15 Tepe B, Sihoglu-Tepe A, Daferera D, Polissiou M, Sokmen A. Chemical composition and antioxidant activity of the essential oil of Clinopodium vulgare L. Food Chem 2007; 103: 766-770
- 16 Hanamanthagouda MS, Kakkalameli SB, Naik PM, Nagella P, Seetharamareddy HR, Murthy HN. Essential oils of Lavandula bipinnata and their antimicrobial activities. Food Chem 2010; 118: 836-839
- 17 Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, Warmington JR, Wyllie SG. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 2000; 88: 170-175
- 18 Burt S. Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 2004; 94: 223-253
- 19 Dubey D, Padhy RN. Antibacterial activity of Lantana camara L. against multidrug resistant pathogens from ICU patients of a teaching hospital. J Herb Med 2013; 3: 65-75
- 20 Hajhashemi V, Ghannadi A, Sharif B. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol 2003; 89: 67-71
- 21 Santos FA, Rao VSN. Anti-inflammatory and anti-nociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother Res 2000; 14: 240-244
- 22 Juergens UR, Stöber M, Vetter H. Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1,8-cineole) in human blood monocytes in vitro . Eur J Med Res 1998; 17: 508-510
- 23 Calixto JB, Campos MM, Otuki MF, Santos ARS. Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, cheokines and adhesion molecules. Planta Med 2004; 70: 93-103
- 24 Juergens UR, Dethlefsen U, Steinkam G, Gillissen A, Repges R, Vetter H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med 2003; 97: 250-256
- 25 Déciga-Campos M, Rivero-Cruz I, Arriaga-Alba M, Castaneda-Corral G, Angeles-Lopez GE, Navarrete A, Mata R. Acute toxicity and mutagenic activity of Mexican plants used in traditional medicine. J Ethnopharmacol 2007; 110: 334-342
- 26 Parra A, Yhebra R, Sardinas I, Buela L. Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine 2001; 8: 395-400
- 27 Devaraj S, Ismail S, Ramanathan S, FeiYam M. In vivo toxicological investigations of standardized ethanolic extract of Curcuma xanthorrhiza Roxb. rhizome. J Nat Prod Plant Resour 2013; 3: 67-73
- 28 OECD Guideline for Testing of Chemicals: Acute Oral Toxicity – Up-and-Down Procedure. Environmental Health and Safety Monograph Series on Testing and Assessment nº 425. 2001
- 29 Dobetsberger C, Buchbauer G. Actions of essential oils on the central nervous system: An updated review. Flavour Fragr J 2011; 26: 300-316
- 30 Gambhire M, Juvekar M, Juvekar A, Wankhede S, Sakat S. Evaluation of anti-inflammatory and radical scavenging activity of an aqueous extract of Barleria cristata leaves. Planta Med 2009; 75: PJ166
- 31 COE. European Pharmacopoeia, 6th edition. Strasbourg: Council of Europe; 2007
- 32 Cavaleiro C, Salgueiro LR, Miguel MG, Proença da Cunha A. Analysis by gas chromatography-mass spectrometry of the volatile components of Teucrium lusitanicum and Teucrium algarbiensis . J Chromatogr A 2004; 1033: 187-190
- 33 Mottram R. The LRI and odour database. Flavour Research Group, School of Food Biosciences. Reading, UK: University of Reading; 2005. Available at http://www.odour.org.uk/index.html Accessed December 1, 2015
- 34 McLafferty W. Wiley Registry of Mass Spectral Data 7th/NIST 08. Mass Spectral Library; 2000. Available at http://www.nist.gov/ Accessed March 31, 2016
- 35 Martins MR, Arantes S, Candeias F, Tinoco MT, Cruz-Morais J. Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils. J Ethnopharmacol 2014; 151: 485-492
- 36 Tepe B, Sokmen A. Screening of the antioxidative properties and total phenolic contents of three endemic Tanacetum subspecies from Turkish flora. Bioresour Technol 2007; 98: 3076-3079
- 37 Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 2010; 89: 217-233
- 38 National Committee for Clinical Laboratory Standards (NCCLS). Performance standards for antimicrobial disk susceptibility tests, approved standard. (NCCLS document M2-A8), 8th edition. Wayne, PA: National Committee for Clinical Laboratory Standards; 2003
- 39 Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. (CLSI document M27-A3). 3rd. edition. Wayne, PA: Clinical and Laboratory Standards Institute; 2008
- 40 The Council of the European Communities. Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes (86/609/EEC). Brussels, Belgium: European Economic Community; 1986
- 41 Hau J, Schapiro SJ. Handbook of laboratory animal science. 3rd. edition, Vol. II. Animal Models. New York: CRC Press; 2011
- 42 Vogel HG. Drug discovery and evaluation: pharmacological assays. Berlin, Heidelberg: Springer-Verlag; 2002