Klinische Neurophysiologie 2016; 47(04): 200-207
DOI: 10.1055/s-0042-104607
Niels-A.-Lassen-Preis 2016
© Georg Thieme Verlag KG Stuttgart · New York

Resilienz gegen Rückfall – protektive neuronale Mechanismen in der Alkoholabhängigkeit

Resilience against Relapse – Protective Neural Mechanisms in Alcohol Dependence
K. Charlet
1   Klinik für Psychiatrie und Psychotherapie, AG Emotional Neuroscience, Charité - Universitätsmedizin Berlin, Campus Charité Mitte
› Author Affiliations
Further Information

Publication History

Publication Date:
07 July 2016 (online)

Zusammenfassung

Als zentrale Aspekte der Alkoholabhängigkeit gelten eine veränderte Emotionswahrnehmung, –regulation und eine verminderte kognitive Fähigkeit zur exekutiven Verhaltenskontrolle. Auch das Zusammenspiel von genetischen und suchtrelevanten Persönlichkeitsfaktoren und der Hirnfunktion und –struktur werden verstärkt diskutiert. Die vorliegenden multimodalen Bildgebungsstudien sollten das Verständnis der neurobiologischen Grundlagen der Emotionsverarbeitung und Exekutivfunktionen in der Alkoholabhängigkeit erweitern, vor allem in Hinsicht auf mögliche Zusammenhänge zum individuellen Rückfallrisiko. Dafür wurden (prospektive) Untersuchungen mit alkoholabhängigen Patienten nach der Entgiftung, gesunden Erwachsenen und gesunden Jugendlichen durchgeführt, unter Verwendung von funktioneller und struktureller Magnetresonanztomografie sowie von Positronen-Emissions-Tomografie. Zusätzlich wurde bei den alkoholabhängigen Patienten das in früheren Studien beschriebene Rückfallrisiko-assoziierte GATA4- rs13273672-Gen bestimmt, um dessen Einfluss auf die funktionelle Alkoholreizverarbeitung und den Therapieverlauf zu prüfen. In diesen Studien konnten protektive Faktoren identifiziert werden, die vermutlich einem zukünftigen Rückfall entgegenwirken: 1) erhöhte Aktivierung des anterioren cingulären Kortex während der Verarbeitung negativer Emotionen; 2) flexible und kompensatorische Aktivierung neuronaler (präfrontaler) Ressourcen zur Bewältigung hoher kognitiver Ansprüche; 3) GATA4-Genotyp-abhängige Amygdala-Reaktivität auf Suchtreize; und 4) strukturelle Integrität der Frontalhirnareale, die sowohl mit der Verhaltenssteuerung als auch mit (suchtrelevanter) Impulsivität assoziiert sind. Somit geben diese Studienergebnisse wichtige Hinweise auf protektive neuronale Mechanismen in der Alkoholabhängigkeit, die Patienten nach der Entgiftung befähigen, auch angesichts schwieriger Situationen abstinent zu bleiben und kennzeichnen möglicherweise Faktoren und Hirnveränderungen erfolgreicher Therapieprozesse.

Abstract

Central aspects of alcohol dependence are an altered perception of emotion and regulation of negative mood as well as reduced cognitive control over executive functioning. Furthermore, the interaction between genetics and addiction-associated personality factors, on the one hand and brain function and structure, on the other are in the focus of interest. The present multimodal imaging studies aimed to gain further insights into the neurobiological basis of emotion processing and executive functions in alcohol dependence and to elucidate their role in increasing resilience against relapse. Therefore, we examined detoxified alcohol-dependent patients, healthy adults and adolescents using functional and structural magnetic resonance imaging, as well as positron emission tomography and associated the patients’ clinical development prospectively. Additionally, genotyping of GATA4 rs13273672, which had previously been associated with treatment outcome, was performed to test for potential genotype effects on alcohol cue-induced brain activity and relapse behavior. Our studies revealed protective mechanisms against relapse: 1) increased activation in the anterior cingulate cortex during emotion processing, 2) flexible activation of prefrontal resources when mastering high cognitive demands, 3) a GATA4-genotype-dependent high amygdala-reactivity elicited by alcohol cues, and 4) structural integrity of frontal brain areas implicated in reasoning, behavior control and trait impulsiveness. These results help to identify mechanisms contributing to resilience against relapse in alcohol dependence, which enable patients to remain abstinent despite stressful situations, and which may characterize factors or brain changes of successful therapeutic processes.

 
  • Literatur

  • 1 Destatis – Statistisches Bundesamt. Diagnosedaten der Patienten und Patientinnen in Krankenhäusern (einschl. Sterbe- und Stundenfälle). Fachserie 12 Reihe 6.2.1 2014
  • 2 Pabst A, Kraus L, Gomes de Matos E et al. Substanzkonsum und substanzbezogene Störungen in Deutschland im Jahr 2012. Sucht 2013; 59: 321-331
  • 3 Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften. S3-Leitlinie – Screening, Diagnose und Behandlung alkoholbezogener Störungen, Stand 22.04.2015. 2015
  • 4 Boothby LA, Doering PL. Acamprosate for the treatment of alcohol dependence. Clin Ther 2005; 27: 695-714
  • 5 Charlet K, Beck A, Heinz A. The dopamine system in mediating alcohol effects in humans. Curr Top Behav Neurosci 2013; 13: 461-488
  • 6 Heinz A, Beck A, Wrase J et al. Neurotransmitter Systems in Alcohol Dependence. Pharmacopsychiatry 2009; 42: S95-S101
  • 7 Heinz A, Batra A, Scherbaum N et al. Neurobiologie der Abhängigkeit. Grundlagen und Konsequenzen für Diagnose und Therapie von Suchterkrankungen. 1. Auflage. Stuttgart: Verlag W. Kohlhammer; 2012
  • 8 Charlet K, Heinz A. Pathomechanismen der Abhängigkeitserkrankungen Funktion und Neuroanatomie des Belohnungssystems. InFo Neurol Psychiatr 2012; 10: 44-53
  • 9 Böning J. Neurobiologische Perspektiven für die Suchtforschung und -behandlung am Beispiel des “Suchtgedächtnisses.”. In: Die Zukunft der Suchtbehandlung – Trends und Prognosen. Geesthacht; Neuland: 2002: 274-281
  • 10 Grüsser S, Wrase J, Klein S et al. Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berl) 2004; 175: 296-302
  • 11 Wrase J, Schlagenhauf F, Kienast T et al. Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage 2007; 35: 787-794
  • 12 Herrmann MJ, Weijers HG, Wiesbeck GA et al. Event-related potentials and cue-reactivity in alcoholism. Alcohol Clin Exp Res 2000; 24: 1724-1729
  • 13 Moselhy H, Georgiou G, Kahn A. Frontal lobe changes in alcoholism: a review of the literature. Alcohol Alcohol 2001; 36: 357-368
  • 14 Kril J, Halliday G, Svoboda M et al. The cerebral cortex is damaged in chronic alcoholics. Neuroscience 1997; 79: 983-998
  • 15 Chanraud S, Martelli C, Delain F et al. Brain morphometry and cognitive performance in detoxified alcohol-dependents with preserved psychosocial functioning. Neuropsychopharmacology 2007; 32: 429-438
  • 16 Kühn S, Charlet K, Schubert F et al. Plasticity of hippocampal subfield volume cornu ammonis 2+3 over the course of withdrawal in patients with alcohol dependence. JAMA psychiatry 2014; 71: 806-811
  • 17 Mann K, Ackermann K, Croissant B et al. Neuroimaging of gender differences in alcohol dependence: are women more vulnerable?. Alcohol Clin Exp Res 2005; 29: 896-901
  • 18 Wise R, Rompre P. Brain Dopamine and Reward. Annu Rev Psychol 1989; 40: 191-225
  • 19 Di Chiara G. The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend 1995; 38: 95-137
  • 20 Stavro K, Pelletier J, Potvin S. Widespread and sustained cognitive deficits in alcoholism: a meta-analysis. Addict Biol 2013; 18: 203-213
  • 21 Philippot P, Kornreich C, Blairy S et al. Alcoholics’ Deficit in the Decoding of Emotional Facial Expression. Alcohol Clin Exp Res 1999; 23: 1031-1038
  • 22 Frigerio E, Burt D, Montagne B et al. Facial affect perception in alcoholics. Psychiatry Res 2002; 113: 161-171
  • 23 Uekermann J, Daum I. Social cognition in alcoholism: a link to prefrontal cortex dysfunction?. Addiction 2008; 103: 726-735
  • 24 Kornreich C, Philippot P, Foisy M et al. Impaired Emotional Facial Expression recognition Is associated with interpersonal problems in alcoholism. Alcohol Alcohol 2002; 37: 394-400
  • 25 Townshend J, Duka T. Mixed emotions: alcoholics’ impairments in the recognition of specific emotional facial expressions. Neuropsychologia 2003; 41: 773-782
  • 26 Foisy M, Kornreich C, Petiau C et al. Impaired emotional facial expression recognition in alcoholics: are these deficits specific to emotional cues?. Psychiatry Res 2007; 150: 33-41
  • 27 Duberstein P, Conwell Y, Caine E. Interpersonal stressors, substance abuse, and suicide. J Nerv Ment Dis 1993; 181: 80-85
  • 28 Heinz A, Beck A, Meyer-Lindenberg A et al. Cognitive and neurobiological mechanisms of alcohol-related aggression. Nat Rev Neurosci 2011; 12: 400-413
  • 29 Salloum J, Ramchandani V, Bodurka J et al. Blunted rostral anterior cingulate response during a simplified decoding task of negative emotional facial expressions in alcoholic patients. Alcohol Clin Exp Res 2007; 31: 1490-1504
  • 30 Hartka E, Johnstone B, Leino E et al. A meta-analysis of depressive symptomatology and alcohol consumption over time. Br J Addict 1991; 86: 1283-1298
  • 31 Phelps E, LeDoux J. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 2005; 48: 175-187
  • 32 Kienast T, Hariri A, Schlagenhauf F et al. Dopamine in amygdala gates limbic processing of aversive stimuli in humans. Nat Neurosci 2008; 11: 1381-1382
  • 33 Marinkovic K, Oscar-Berman M, Urban T et al. Alcoholism and dampened temporal limbic activation to emotional faces. Alcohol Clin Exp Res 2009; 33: 1880-1892
  • 34 Volkow N, Fowler J, Wang G-J et al. Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem 2002; 78: 610-624
  • 35 Kienast T, Schlagenhauf F, Rapp MA et al. Dopamine-modulated aversive emotion processing fails in alcohol-dependent patients. Pharmacopsychiatry 2013; 46: 130-136
  • 36 Charlet K, Schlagenhauf F, Richter A et al. Neural activation during processing of aversive faces predicts treatment outcome in alcoholism. Addict Biol 2014; 19: 439-451
  • 37 Heinz A, Braus D, Smolka M et al. Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat Neurosci 2005; 8: 20-21
  • 38 Quirk G, Beer J. Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol 2006; 16: 723-727
  • 39 Walter H, von Kalckreuth A, Schardt D et al. The temporal dynamics of voluntary emotion regulation. PLoS One 2009; 4: e6726
  • 40 Heinz A, Beck A, Grüsser S et al. Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict Biol 2009; 14: 108-118
  • 41 Goldstein R, Volkow N. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 2011; 12: 652-669
  • 42 Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci 2003; 4: 829-839
  • 43 D’Esposito M. From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci 2007; 362: 761-772
  • 44 Hofmann W, Schmeichel B, Baddeley A. Executive functions and self-regulation. Trends Cogn Sci 2012; 16: 174-180
  • 45 Vollstädt-Klein S, Hermann D, Rabinstein J et al. Increased activation of the ACC during a spatial working memory task in alcohol-dependence versus heavy social drinking. Alcohol Clin Exp Res 2010; 34: 771-776
  • 46 Chanraud S, Pitel A-L, Pfefferbaum A et al. Disruption of functional connectivity of the default-mode network in alcoholism. Cereb Cortex 2011; 21: 2272-2281
  • 47 Pfefferbaum A, Desmond J, Galloway C et al. Reorganization of frontal systems used by alcoholics for spatial working memory: an fMRI study. Neuroimage 2001; 14: 7-20
  • 48 Tapert S, Brown G, Kindermann S et al. fMRI measurement of brain dysfunction in alcohol-dependent young women. Alcohol Clin Exp Res 2001; 25: 236-245
  • 49 Sullivan E, Pfefferbaum A. Neurocircuitry in alcoholism: a substrate of disruption and repair. Psychopharmacology (Berl) 2005; 180: 583-594
  • 50 Charlet K, Beck A, Jorde A et al. Increased neural activity during high working memory load predicts low relapse risk in alcohol dependence. Addict Biol 2014; 19: 402-414
  • 51 Owen A, McMillan K, Laird A et al. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 2005; 25: 46-59
  • 52 Rietschel M, Treutlein J. The genetics of alcohol dependence. Ann N Y Acad Sci 2013; 1282: 39-70
  • 53 Hu X, Li T, Zhang C et al. GATA4 regulates ANF expression synergistically with Sp1 in a cardiac hypertrophy model. J Cell Mol Med 2011; 15: 1865-1877
  • 54 McBride K, Nemer M. Regulation of the ANF and BNP promoters by GATA factors: lessons learned for cardiac transcription. Can J Physiol Pharmacol 2001; 79: 673-681
  • 55 Kiefer F, Witt S, Frank J et al. Involvement of the atrial natriuretic peptide transcription factor GATA4 in alcohol dependence, relapse risk and treatment response to acamprosate. Pharmacogenomics J 2011; 11: 368-374
  • 56 Agnihotri S, Wolf A, Picard D et al. GATA4 is a regulator of astrocyte cell proliferation and apoptosis in the human and murine central nervous system. Oncogene 2009; 28: 3033-3046
  • 57 Agnihotri S, Wolf A, Munoz DM et al. A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas. J Exp Med 2011; 208: 689-702
  • 58 Kiefer F, Andersohn F, Jahn H et al. Involvement of plasma atrial natriuretic peptide in protracted alcohol withdrawal. Acta Psychiatr Scand 2002; 105: 65-70
  • 59 Jorde A, Bach P, Witt SH et al. Genetic variation in the atrial natriuretic peptide transcription factor GATA4 modulates amygdala responsiveness in alcohol dependence. Biol Psychiatry 2014; 75: 790-797
  • 60 Glahn DC, Lovallo WR, Fox PT. Reduced amygdala activation in young adults at high risk of alcoholism: studies from the Oklahoma family health patterns project. Biol Psychiatry 2007; 61: 1306-1309
  • 61 Heitzeg MM, Nigg JT, Yau W-YW et al. Affective circuitry and risk for alcoholism in late adolescence: differences in frontostriatal responses between vulnerable and resilient children of alcoholic parents. Alcohol Clin Exp Res 2008; 32: 414-426
  • 62 Nikolova YS, Hariri AR. Neural responses to threat and reward interact to predict stress-related problem drinking: A novel protective role of the amygdala. Biol Mood Anxiety Disord 2012; 2: 19
  • 63 Yan P, Li C-SR. Decreased amygdala activation during risk taking in non-dependent habitual alcohol users: A preliminary fMRI study of the stop signal task. Am J Drug Alcohol Abuse 2009; 35: 284-289
  • 64 Beck A, Wüstenberg T, Genauck A et al. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients. Arch Gen Psychiatry 2012; 69: 842-852
  • 65 Barratt ES. Perceptual-motor performance related to impulsiveness and anxiety. Percept Mot Skills 1967; 25: 485-492
  • 66 Barratt E. Impulsivity, Behavioral Dyscontrol, and Conscious Awareness. Behav Mot Control Psychiatr Disord 1982; S04: 217
  • 67 Cloninger CR, Sigvardsson S, Bohman M. Childhood personality predicts alcohol abuse in young adults. Alcohol Clin Exp Res 1988; 12: 494-505
  • 68 Sher KJ, Bartholow BD, Wood MD. Personality and substance use disorders: a prospective study. J Consult Clin Psychol 2000; 68: 818-829
  • 69 Schilling C, Kühn S, Romanowski A et al. Common structural correlates of trait impulsiveness and perceptual reasoning in adolescence. Hum Brain Mapp 2013; 34: 374-383
  • 70 Petermann F, Petermann U. Hamburg-Wechsler-Intelligenztest für Kinder- IV. Manual, Übersetzung und Adaption der WISC-IV von David Wechsler 2007
  • 71 Kumari V, Barkataki I, Goswami S et al. Dysfunctional, but not functional, impulsivity is associated with a history of seriously violent behaviour and reduced orbitofrontal and hippocampal volumes in schizophrenia. Psychiatry Res 2009; 173: 39-44
  • 72 Matsuo K, Nicoletti M, Nemoto K et al. A voxel-based morphometry study of frontal gray matter correlates of impulsivity. Hum Brain Mapp 2009; 30: 1188-1195
  • 73 Aron AR, Poldrack RA. The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1285-1292
  • 74 Sharp DJ, Bonnelle V, De Boissezon X et al. Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc Natl Acad Sci U S A 2010; 107: 6106-6111
  • 75 Andersson M, Ystad M, Lundervold A et al. Correlations between measures of executive attention and cortical thickness of left posterior middle frontal gyrus – a dichotic listening study. Behav Brain Funct 2009; 5: 41
  • 76 Spanagel R, Durstewitz D, Hansson A et al. A systems medicine research approach for studying alcohol addiction. Addict Biol 2013; 18: 883-896