Informationen aus Orthodontie & Kieferorthopädie 2016; 48(01): 39-54
DOI: 10.1055/s-0042-105269
Übersichtsartikel
© Georg Thieme Verlag KG Stuttgart · New York

Digitale Kieferorthopädie[*]

Digital Orthodontics
K.-F. Krey
1   Poliklinik für Kieferorthopädie, Universitätsmedizin Greifswald
,
F. Orlob
2   Poliklinik für Kieferorthopädie, Universitätsklinikum Leipzig; niedergelassen in eigener Praxis für Kieferorthopädie, Plauen
,
S. Gorynia
3   Weiterbildungsassistentin für Kieferorthopädie, Poliklinik für Kieferorthopädie, Universitätsmedizin Greifswald
,
R. Kühnert
4   Managing Director der Image Instruments GmbH (Schwerpunkt: Entwicklung 2D/3D Dental Imaging Software)
› Author Affiliations
Further Information

Publication History

Publication Date:
14 April 2016 (online)

In der gesamten Zahnmedizin sind in den letzten Jahren Veränderungen durch die immer stärkere Durchdringung digitaler Verfahren zu spüren. Neben etablierten Methoden wie der CAD/CAM‑gestützten Herstellung (CAD: Computer Aided Design; CAM: Computer Aided Manufacturing) von Zahnersatz in Form von Kronen und Brücken, Chairside oder im Labor, oder der instrumentellen Funktionsanalyse rückt nun die Verbindung dieser Elemente im Sinne einer „Smart Dentistry“ in den Vordergrund. Mit den neuen Verfahren halten auch neue Materialien Einzug in die Praxis. Ebenso wird das Berufsbild des Zahntechnikers in absehbarer Zukunft einem dramatischenWandel unterliegen.

* Dieser Artikel ist im Original erschienen in: Zahnmedizin up2date 2015; 6; 537–560.


 
  • Literatur

  • 1 Harradine N, Suominen R, Stephens C et al. Holograms as substitutes for orthodontic study casts: a pilot clinical trial. Am J Orthod Dentofacial Orthop 1990; 98: 110-116
  • 2 Salmi M. Medical applications of additive manufacturing in surgery and dental care [Doctoral Thesis]. Finnland: Aalto University, Department of Engineering Desing and Production; 2013
  • 3 Kwon SY, Kim Y, Ahn HW et al. Computer-aided designing and manufacturing of lingual fixed orthodontic appliances using 2D/3D registration software and rapid prototyping. Int J Dent 2014; 2014: 164164
  • 4 Grauer D, Proffit WR. Accuracy in tooth positioning with a fully customized lingual orthodontic appliance. Am J Orthod Dentofac Orthop 2011; 140: 433-443
  • 5 Dewhorst R. Assessment of computer customized brackets and positioning jigs. Int J Orthod 2012; 23: 53-58
  • 6 Buschang PH, Ross M, Shaw SG et al. Predicted and actual end-oftreatment occlusion produced with aligner therapy. Angle Orthod 2015; 85: 723-727
  • 7 Luu NS, Nikolcheva LG, Retrouvey JM et al. Linear measurements using virtual study models. A systematic review. Angle Orthod 2012; 82: 1098-1106
  • 8 Ghislanzoni LTH, Lineberger M, Cevidanes LHS et al. Evaluation of tip and torque on virtual study models: a validation study. Progress Orthod 2013; 14: 19
  • 9 Wriedt S, Schmidtmann I, Niemann M et al. Digital 3D image of bimaxillary casts connected by a vestibular scan. J Orofac Orthop 2013; 74: 309-318
  • 10 Cuperus AMR, Harms MC, Rangel FA et al. Dental models made with an intraoral scanner: A validation study. Am J Orthod Dentofac Orthop 2012; 142: 308-313
  • 11 Kattadiyil MT, Mursic Z, Al Rumaih H et al. Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. J Prosth Dent 2014; 112: 444-448
  • 12 Grünheid T, McCarty SD, Larson BE. Clinical use of a direct chairside oral scanner: An assessment of accuracy, time, and patient acceptance. Am J Orthod Dentofac Orthop 2014; 146: 673-682
  • 13 Kim JH, Kim KB, Kim WC et al. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique. Kor J Orthod 2014; 44: 69-76
  • 14 Patzelt SB, Bishti S, Stampf S et al. Accuracy of computer-aided design/computer-aided manufacturing – generated dental casts based on intraoral scanner data. J Am Dent Assoc 2014; 145: 1133-1140
  • 15 Wiranto MG, Engelbrecht WP, Nolthenius HET et al. Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. Am J Orthod Dentofac Orthop 2013; 143: 140-147
  • 16 Hirschfelder U. Stellungnahme der DGKFO zur Radiologischen 3D‑Diagnostik in der Kieferorthopädie (CT/DVT). DGKFO 2008
  • 17 Toma AM, Zhurow A, Payle E et al. Reproducibility of facial soft tissue landmarks on 3D laser-scanned facial images. Orthod Craniofac Res 2009; 12: 33-42
  • 18 Wiechmann D, Rummel V, Thalheim A et al. Customized brackets and archwires for lingual orthodontics. Am J Orthod Dentofac Orthop 2003; 124: 593-599
  • 19 Kühnert R. Virtuelle Behandlungsplanung in der KFO‑Therapie. COO 2013; 3–4: 52-64
  • 20 Im J, Cha JY, Lee KJ et al. Comparison of virtual and manual tooth setups with digital and plaster models in extraction cases. Am J Orthod Dentofac Orthop 2014; 145: 434-442
  • 21 Martorelli M, Gerbuno S, Giudice M et al. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent Mat 2013; 20: e1-e10
  • 22 Hurt AJ. Digital technology in the orthodontic laboratory. Am J Orthod Dentofac Orthop 2012; 141: 245-247
  • 23 Conner BP, Manogharan GP, Martof AN et al. Making sense of 3D printing: Creating a map of additive manufacturing products and services. Add Manufact 2014; 1: 64-76
  • 24 Groth C, Kravitz ND, Jones PE et al. Three-dimensional printing technology. J Clin Orthod 2014; 163: 475-485
  • 25 Adolphs N, Liu W, Keeve E et al. RapidSplint: virtual splint generation for orthognathic surgery – results of a pilot series. Comput Aided Surg 2014; 19: 20-28
  • 26 Kaduk WMH, Podmelle F, Louis PJ. Surgical navigation in reconstruction. Oral Maxillofac Surg Clin N Am 2013; 25: 313-333
  • 27 Ahamed SF, Kanna ASA. A 3D‑printed miniscrew insertion stent. JCO 2014; 163: 650-652
  • 28 Salmi M, Tuomi J, Sirkkanen R et al. Rapid tooling method for soft customized removable oral appliances. Open Dent J 2012; 6: 85-89
  • 29 Mortadi NA, Eggbeer D, Lewis J et al. CAD/CAM/AM applications in the manufacture of dental appliances. Am J Orthod Dentofac Orthop 2012; 142: 727-733
  • 30 Wolf M, Schumacher P, Jäger F et al. Novel lingual retainer created using CAD/CAM technology. J Orofac Orthop 2015; 76: 164-174
  • 31 Yu Q, Xin G, Guo-Min W et al. A novel technique for presurgical nasoalveolar molding using computer-aided reverse engineering and rapid prototyping. J Craniofac Surg 2011; 22: 142-146
  • 32 van Noordt G. The future of dental devices is digital. Dent Mater 2012; 28: 3-12
  • 33 Patzelt SBM, Lamprinos C, Stampf S et al. The time efficiency of intraoral scanners. An in vitro comparative study. J Am Dent Assoc 2014; 145: 542-551
  • 34 Liu YF, Zhang PY, Zhang QF et al. Digital design and fabrication of simulation model for measuring orthodontic force. Bio Med Mat Engin 2014; 24: 2265-2271
  • 35 Wu K, Chen L, Zhou Y. Tooth segmentation on dental meshes using morphologic skeleton. Com & Graphics 2014; 38: 199-211
  • 36 Plooij JM, Maal TJJ, Haers P et al. Digital three-dimensional image fusion process for planning and evaluating orthodontics and orthognathic surgery. A systematic review. In J Oral Maxillofac Surg 2011; 40: 341-352
  • 37 Shqaidef A, Ayoub AF, Khambay BS. How accurate are rapid prototyped (RP) final orthodontic surgical wafers? A pilot study. Br J Oral Maxillofac Surg 2014; 52: 609-614
  • 38 Soares PV, de Almeida Milito G, Pereira FA et al. Rapid prototyping and 3D‑virtual models for operative dentistry education in Brazil. J Dent Edu 2013; 77: 358-363
  • 39 Vassura G, Vassura M, Bazzacchi A et al. A shift of the force vector from arm to brain: 3D computer technology in orthodontic treatment. Int Orthod 2010; 8: 46-63
  • 40 Miyazaki T, Hotta Y, Kunii J et al. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mat 2009; 28: 44-56