neuroreha 2016; 08(02): 89-92
DOI: 10.1055/s-0042-106159
Originalarbeit
Georg Thieme Verlag KG Stuttgart · New York

MuKieHs – Muskelveränderungen bei Kindern und Jugendlichen nach erworbenen Hirnschädigungen

Christine Wimmer
1   Klinik für Neuropädiatrie und neurologische Rehabilitation, Schön Klinik Vogtareuth, Krankenhausstraße 20, 83669 Vogtareuth
,
Christine Jansen
2   Haunersches Kinderspital, Kinderklinik und Kinderpoliklinik, Ludwig-Maximilians-Universität, München
,
Steffen Berweck
3   Klinik für Neuropädiatrie und neurologische Rehabilitation Epilepsiezentrum für Kinder und Jugendliche, Schön Klinik Vogtareuth
› Author Affiliations
Further Information

Publication History

Publication Date:
10 June 2016 (online)

Zusammenfassung

Im Ultraschall können Veränderungen der Muskulatur bei unterschiedlichen Patientengruppen mit neurologischen Erkrankungen nachgewiesen werden. Die folgende Arbeit untersucht, ob diese Veränderungen bereits in der Frührehabilitation bei Kindern und Jugendlichen nach einer erworbenen Hirnschädigung auftreten und wovon diese beeinflusst werden.

 
  • Literatur

  • 1 Allington NJ, Leroy N, Doneux C. Ankle joint range of motion measurements in spastic cerebral palsy children: Intraobserver and interobserver reliability and reproducibility of goniometry and visual estimation. Journal of Pediatric Orthopaedics 2002; 11 (3) 236-239
  • 2 Barber L, Hastings-Ison T, Bake R et al. Medial Gastrocnemius volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Developmental Medicine and Child Neurology 2011; 53 (6) 543-548
  • 3 Ben-Shabat E et al. Intra- and interrater reliability of the Modified Tardieu Scale for the assessment of lower limb spasticity in adults with neurologic injuries. Archives of Physical Medicine and Rehabilitation 2013; 94 (12) 2494-2501
  • 4 Boyd R, Graham HK. Botulinumtoxin A in the management of children with cerebral palsy: Indications and outcome. European Journal of Neurology 1997; 4 (2) 15-21
  • 5 Heckmatt JZ, Dubowitz V, Leeman S. Detection of pathological change in dystrophic muscle with B-Scan ultrasound imaging. The Lancet 1980; 315 (8183) 1389-1390
  • 6 Heckmatt J, Leeman S, Dubowitz V. Ultrasound imaging in the diagnosis of muscle disease. The Journal of Pediatrics 1982; 101 (5) 656-660
  • 7 Hüter-Becker A, Dölken M. Physiotherapie in der Pädiatrie. Stuttgart: Thieme; 2010
  • 8 Kelly G et al. Gross Motor Function Measure-66 trajectories in children recovering after severe acquired brain injury. Developmental Medicine and Child Neurology 2014; 57 (3) 241-247
  • 9 Lee M et al. The effects of progressive functional training on lower limb muscle architecture and motor function in children with spastic cerebral palsy. Journal of Physical Therapy Science 2015; 27 (5) 1581-1584
  • 10 Lieber RL. Skeletal muscle structure, function, and plasticity. Philadelphia: Williams & Wilkins; 2010
  • 11 Linder-Lucht M et al. Validation of the Gross Motor Function Measure for use in children and adolescents with traumatic brain injuries. Pediatrics 2007; 120 (4) 880-886
  • 12 Mayans D, Cartwright DS, Walker FO. Neuromuscular ultrasonography: Quantifying muscle and nerve measurements. Physical Medical & Rehabilitation Clinics 2012; 23 (1) 133-148
  • 13 McCauley SR, Wilde ES, Anderson V. Recommendations for the use of common outcome measures in pediatric traumatic brain injury research. Journal of Neurotrauma 2012; 29 (4) 678-705
  • 14 Mehrholz J et al. Reliability of the Modified Tardieu Scale and the Modified Ashworth Scale in adult patients with severe brain injury: A comparison study. Clinical Rehabilitation 2005; 19 (7) 751-759
  • 15 Mohaghegh IA et al. Differences in gastrocnemius muscle architecture between the paretic and non-paretic legs in children with hemiplegic cerebral palsy. Clinical Biomechanics 2007; 22: 718-724
  • 16 Moreau NA et al. Muscle architecture predicts maximum strength and is related to activity levels in cerebral palsy. Physical Therapy 2010; 90 (11) 1619-1630
  • 17 Ohata K et al. Relation between muscle thickness, spasticity, and activity limitations in children and adolescents with cerebral palsy. Developmental Medicine and Child Neurology 2008; 50 (2) 152-156
  • 18 Paternostro-Sluga T et al. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. Journal of Rehabilitation Medicine 2008; 40 (8) 665-671
  • 19 Picelli A et al. Is spastic muscle echo intensity related to the response to botulinum toxin type A in patients with stroke? A cohort study. Archive of Physical Medical Rehabilitation 2012; 93: 1253-1258
  • 20 Picelli A et al. Relationship between ultrasonographic, electromyographic, and clinical parameters in adult stroke patients with spastic equinus: An observational study. Archives of Physical Medicine and Rehabilitation 2014; 95: 1564-1570
  • 21 Pitcher CA et al. Ultrasound characterization of medial gastrocnemius tissue composition in children with spastic cerebral palsy. Muscle & Nerve 2015; 53 (3) 397-403
  • 22 Reimers K et al. Skeletal muscle sonography: A correlative study of echogenicity and morphology. Journal of Ultrasound in Medicine 1993; 12 (2) 73-77
  • 23 Reimers CD, Kellner H. Muscle Ultrasound. Muscle Imaging in Health and Disease. New York: Springer; 1996
  • 24 Rickels E, von Wild K, Wenzlaff P. Head injury in Germany: A population-based prospective study on epidemiology, causes, treatment and outcome of all degrees of head-injury severity in two distinct areas. Brain Injury 2010; 24 (12) 1491-1504
  • 25 Russell DJ et al. Improved scaling of the Gross Motor Function Measure for children with cerebral palsy: Evidence of reliability and validity. Physical Therapy 2000; 80 (9) 873-885
  • 26 Scholten RR et al. Quantitative Ultrasonography of skeletal muscles in children: normal values. Muscle & Nerve 2003; 27: 693-698
  • 27 Soucie JM et al. Range of motion measurements: Reference values and a database for comparison studies. Haemophilia 2011; 17 (3) 500-507