Kardiologie up2date 2016; 12(02): 187-197
DOI: 10.1055/s-0042-107168
Diagnostische Verfahren und Bildgebung
© Georg Thieme Verlag KG Stuttgart · New York

Bildgebung bei angeborenen Vitien im Erwachsenenalter – Grundlagen

Dirk Loßnitzer
Further Information

Publication History

Publication Date:
23 June 2016 (online)

Abstract

The population of patients with congenital heart disease is growing. Major improvements in screening, diagnostics as well as interventional, surgical and medical treatment led to an improved life expectancy. Eventually the majority of newborns with congenital heart disease reach adulthood. Non invasive sceening by prenatal ultrasound as well as imaging by 2 D and 3 D echocardiography, cardiac MRI and cardiac CT are developing rapidly and became important tools for paediatric and adult cardiologist as well as surgeons for the diagnosis, treatment guiding, planning of surgical interventions as well as longtime follow ups. This article gives a brief introduction in the actual imaging modalities, their indications as well as advantages and disadvantages for patients with congenital heart disease.

Kernaussagen
  • Etwa 1 % aller lebend geborenen Kinder kommen mit einem Herzfehler zur Welt. Die Prognose dieser Patienten hat sich in den vergangenen 2 – 3 Dekaden deutlich verbessert. Daher nimmt die Anzahl der Erwachsenen mit angeborenem Herzfehler ständig zu.

  • Im Rahmen der initialen Diagnosestellung und der Planung von Operationen, aber auch im Follow-up der Patienten ergibt sich die Notwendigkeit serieller bildgebender Untersuchungen.

  • Die Echokardiografie ist nahezu ubiquitär verfügbar, kostengünstig, mobil einsetzbar, nebenwirkungs- und strahlungsfrei. Sie ermöglicht Follow-up-Untersuchungen in kurzen Zeitintervallen und kann auch bei Patienten mit eingeschränkter Kooperationsbereitschaft eingesetzt werden.

  • Mit der MRT sind beliebige Angulationen der Schnittbildebenen im Raum und die Abbildung des gesamten Herzens und der umliegenden Gefäße möglich. Damit lassen sich auch komplexe Morphologien und deren Funktion gut darstellen. Sie ist der Goldstandard bei Patienten mit Kardiomyopathien und mit angeborenen Herzfehlern.

  • Mit der CT lassen sich in der MRT nicht oder schlechter darstellbare sehr kleine anatomische Strukturen mit sehr kurzen Untersuchungszeiten visualisieren. Außerdem kann sie das Lungenparenchym besser darstellen als die MRT.

  • Diagnostische Herzkatheteruntersuchungen sind zunehmend nur noch bei spezifischen, hämodynamischen Fragestellungen notwendig, interventionelle, katheterbasierte Therapien werden dagegen immer häufiger durchgeführt.

  • In der Zukunft bietet die Kombination der Daten verschiedener Verfahren möglicherweise viel Potenzial, um die Diagnostik zu optimieren und interventionelle Eingriffe genauer zu planen.

 
  • Literatur

  • 1 Hoffman JI, Kaplan S, Liberthson RR. Prevalence of congenital heart disease. Am Heart J 2004; 147: 425-439
  • 2 Schwedler G, Lindinger A, Lange PE et al. Frequency and spectrum of congenital heart defects among live births in Germany: a study of the Competence Network for Congenital Heart Defects. Clin Res Cardiol 2011; 100: 1111-1117
  • 3 Wren C, O’Sullivan JJ. Survival with congenital heart disease and need for follow up in adult life. Heart 2001; 85: 438-443
  • 4 Verheugt CL, Uiterwaal CS, van der Velde ET et al. Mortality in adult congenital heart disease. Eur Heart J 2010; 31: 1220-1229
  • 5 Tennant PW, Pearce MS, Bythell M et al. 20-year survival of children born with congenital anomalies: a population-based study. Lancet 2010; 375: 649-656
  • 6 Perloff JK, Warnes CA. Challenges posed by adults with repaired congenital heart disease. Circulation 2001; 103: 2637-2643
  • 7 Moons P, Bovijn L, Budts W et al. Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation 2010; 122: 2264-2272
  • 8 Nieminen HP, Jokinen EV, Sairanen HI. Late results of pediatric cardiac surgery in Finland: a population-based study with 96% follow-up. Circulation 2001; 104: 570-575
  • 9 Marelli AJ, Mackie AS, Ionescu-Ittu R et al. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 2007; 115: 163-172
  • 10 Kaemmerer H, Hess J. Adult patients with congenital heart abnormalities: present and future. Dtsch Med Wochenschr 2005; 130: 97-101
  • 11 van der Bom T, Zomer AC, Zwinderman AH et al. The changing epidemiology of congenital heart disease. Nat Rev Cardiol 2011; 8: 50-60
  • 12 Stout KK, Broberg CS, Book WM et al. American Heart Association Council on Clinical Cardiology, Council on Functional Genomics and Translational Biology, and Council on Cardiovascular Radiology and Imaging. Chronic Heart Failure in Congenital Heart Disease: A Scientific Statement From the American Heart Association. Circulation 2016; 133: 770-801
  • 13 Baumgartner H, Budts W, Chessa M et al. Working Group on Grown-up Congenital Heart Disease of the European Society of Cardiology. Recommendations for organization of care for adults with congenital heart disease and for training in the subspecialty of ‘Grown-up Congenital Heart Disease’ in Europe: a position paper of the Working Group on Grown-up Congenital Heart Disease of the European Society of Cardiology. Eur Heart J 2014; 35: 686-690
  • 14 Colquitt JL, Pignatelli RH. Strain Imaging: The Emergence of Speckle Tracking Echocardiography into Clinical Pediatric Cardiology. Congenit Heart Dis 2016; 11: 199-207
  • 15 Kamperidis V, Marsan NA, Delgado V et al. Left ventricular systolic function assessment in secondary mitral regurgitation: left ventricular ejection fraction vs. speckle tracking global longitudinal strain. Eur Heart J 2016; 37: 811-816
  • 16 Adriaanse BM, van Vugt JM, Haak MC. Three- and four-dimensional ultrasound in fetal echocardiography: an up-to-date overview. J Perinatol 2016; doi:
  • 17 Sah SP, Bartakian S, El-Said H et al. Preprocedural Transthoracic Echocardiography Can Predict Amplatzer Septal Occluder Device Size for Transcatheter Atrial Septal Defect Closure. Congenit Heart Dis 2016; doi:
  • 18 Li RJ, Sun Z, Yang J et al. Diagnostic Value of Transthoracic Echocardiography in Patients With Anomalous Origin of the Left Coronary Artery From the Pulmonary Artery. Medicine (Baltimore) 2016; 95: e3401
  • 19 Haubenreisser H, Henzler T, Budjan J et al. Right Ventricular Imaging in 25 Seconds: Evaluating the Use of Sparse Sampling CINE With Iterative Reconstruction for Volumetric Analysis of the Right Ventricle. Invest Radiol 2016; 51: 379-386
  • 20 Henningsson M, Hussain T, Vieira MS et al. Whole-heart coronary MR angiography using image-based navigation for the detection of coronary anomalies in adult patients with congenital heart disease. J Magn Reson Imaging 2016; 43: 947-955
  • 21 Orwat S, Diller GP, Kempny A et al. German Competence Network for Congenital Heart Defects Investigators. Myocardial deformation parameters predict outcome in patients with repaired tetralogy of Fallot. Heart 2016; 102: 209-215
  • 22 Farooqi KM, Saeed O, Zaidi A et al. 3D Printing to Guide Ventricular Assist Device Placement in Adults With Congenital Heart Disease and Heart Failure. JACC Heart Fail 2016; 4: 301-311
  • 23 Riesenkampff E, Messroghli DR, Redington AN et al. Myocardial T1 mapping in pediatric and congenital heart disease. Circ Cardiovasc Imaging 2015; 8: e002504
  • 24 Vogt FM, Theysohn JM, Michna D et al. Contrast-enhanced time-resolved 4D MRA of congenital heart and vessel anomalies: image quality and diagnostic value compared with 3D MRA. Eur Radiol 2013; 23: 2392-2404
  • 25 Markl M, Schnell S, Wu C et al. Advanced flow MRI: emerging techniques and applications. Clin Radiol 2016; doi:
  • 26 Razavi R, Hill DL, Keevil SF et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet 2003; 362: 1877-1882
  • 27 Kraitchman DL, Kramer CM. Interventions in Complex Congenital Heart Disease: The Exciting Potential of Magnetic Resonance Imaging. JACC Cardiovasc Interv 2016; 9: 971-972
  • 28 Bhagirath P, van der Graaf M, Karim R et al. Interventional cardiac magnetic resonance imaging in electrophysiology: advances toward clinical translation. Circ Arrhythm Electrophysiol 2015; 8: 203-211
  • 29 Achenbach S, Barkhausen J, Beer M et al. Konsensusempfehlungen der DRG/DGK/DGPK zum Einsatz der Herzbildgebung mit CT und MRT. Kardiologe 2012; 6: 105-125
  • 30 Brignole M, Auricchio A, Baron-Esquivias G et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J 2013; 34: 2281-2329
  • 31 Haubenreisser H, Bigdeli A, Meyer M et al. From 3D to 4D: Integration of temporal information into CT angiography studies. Eur J Radiol 2015; 84: 2421-2424
  • 32 Liu Y, Li J, Zhao H et al. Image quality and radiation dose of dual-source CT cardiac angiography using prospective ECG-triggering technique in pediatric patients with congenital heart disease. J Cardiothorac Surg 2016; 11: 47
  • 33 Gao W, Zhong YM, Sun AM et al. Diagnostic accuracy of sub-mSv prospective ECG-triggering cardiac CT in young infant with complex congenital heart disease. Int J Cardiovasc Imaging 2016; [Epub ahead of print]
  • 34 Rockefeller T, Shahanavaz S, Zajarias A et al. Transcatheter implantation of SAPIEN 3 valve in native right ventricular outflow tract for severe pulmonary regurgitation following tetralogy of fallot repair. Catheter Cardiovasc Interv 2016; doi:
  • 35 Holoshitz N, Kenny D, Hijazi ZM. Hybrid interventional procedures in congenital heart disease. Methodist Debakey Cardiovasc J 2014; 10: 93-98
  • 36 Jone PN, Ross MM, Bracken JA et al. Feasibility and Safety of Using a Fused Echocardiography/Fluoroscopy Imaging System in Patients with Congenital Heart Disease. J Am Soc Echocardiogr 2016; doi: