Subscribe to RSS
DOI: 10.1055/s-0042-115782
Die Progression der Nierenerkrankung – wie ist sie zu verhindern?
How to Retard Progression of Chronic Kidney DiseasePublication History
Publication Date:
29 August 2017 (online)
Abstract
End stage chronic kidney disease (CKD) requiring renal replacement therapy is related to poor quality of life and high mortality. Thus, slowing the progression of CKD is an important purpose of therapy. Some general therapeutic approaches aim to slow the decline of renal function and they can be applied in all patients with CKD – irrespective of the underlying cause of CKD. A key intervention is lowering blood pressure (target: ≤ 140/90 mmHg, and in patients with albuminuria ≤ 130/80 mmHg). Inhibitors of the renin angiotensin system preferentially should be used in case of albuminuria, depending on the diabetic status and the level of albuminuria: in diabetics with albuminuria ≥ 30 mg/d, in non-diabetics with albuminuria > 300 mg/d. Mineralocorticoid receptor blockers and endothelin receptors blockers promise novel anti-proteinuric strategies – but still validation of their positive effects on retarding CKD progression is necessary. In patients with diabetic kidney disease, glycemic control aiming for an HbA1c of ≈ 7.0 % has been established to slow CKD progression. Furthermore, SGLT-2 inhibition with empagliflozin may be considered as a new therapeutic approach that provides additional cardiovascular and renal protection. Finally, recent studies suggest: correction of metabolic acidosis and avoidance of episodes of acute renal failure may provide protection against the progression of CKD.
Ohne Zweifel haben „spezifische“ Maßnahmen bei der Therapie der chronischen Nierenerkrankung (CKD) einen hohen Stellenwert. In diesem Beitrag liegt der Fokus eher auf den „unspezifischen“ Interventionen, die bei allen Patienten mit CKD zum Einsatz kommen sollten, um den Verlust der Nierenfunktion so gut wie möglich zu bremsen. Dazu werden die verschiedenen Optionen anhand der aktuellen Studienlage vorgestellt.
-
Literatur
- 1 Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann intern med 2013; 158: 825-830
- 2 Gaede P, Vedel P, Larsen N. et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003; 348: 383-393
- 3 Schneider MP, Hilgers KF. What should be the goal blood pressure in nondiabetic chronic kidney disease?. Curr Opin Nephrol Hypertens 2014; 23: 180-185
- 4 Fleg JL, Evans GW, Margolis KL. et al. Orthostatic Hypotension in the ACCORD (Action to Control Cardiovascular Risk in Diabetes) Blood Pressure Trial: Prevalence, Incidence, and Prognostic Significance. Hypertension 2016; 68: 888-895
- 5 The SPRINT Research Group. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med 2015; 373: 2103-2116
- 6 Kjeldsen SE, Mancia G. The Un-Observed Automated Office Blood Pressure Measurement Technique Used in the SPRINT Study Points to a Standard Target Office Systolic Blood Pressure <140 mmHg. Curr Hypertens Rep 2017; 19: 3
- 7 Grolla E, Bonanni L, Cutolo A. et al. Disputes in the Treatment of Diabetic Nephropathy: The Dual Blockade of Renin-Angiotensin System. Exp Clin Endocrinol Diabetes 2016; 124: 361-366
- 8 Palmer SC, Mavridis D, Navarese E. et al. Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet 2015; 385: 2047-2056
- 9 Ahmed AK, Kamath NS, El Kossi M. et al. The impact of stopping inhibitors of the renin-angiotensin system in patients with advanced chronic kidney disease. Nephrol Dial Transplant 2010; 25: 3977-3982
- 10 Bhandari S, Ives N, Brettell EA. et al. Multicentre randomized controlled trial of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker withdrawal in advanced renal disease: the STOP-ACEi trial. Nephrol Dial Transplant 2016; 31: 255-261
- 11 Ando K, Ohtsu H, Uchida S. et al. Anti-albuminuric effect of the aldosterone blocker eplerenone in non-diabetic hypertensive patients with albuminuria: a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2014; 2: 944-953
- 12 Edwards NC, Steeds RP, Stewart PM. et al. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: a randomized controlled trial. J Am Coll Cardiol 2009; 54: 505-512
- 13 Bakris GL, Agarwal R, Chan JC. et al. Effect of Finerenone on Albuminuria in Patients With Diabetic Nephropathy: A Randomized Clinical Trial. Jama 2015; 314: 884-894
- 14 Schneider MP, Mann JF. Endothelin antagonism for patients with chronic kidney disease: still a hope for the future. Nephrol Dial Transplant 2014; 29: i69-i73
- 15 Patel A, MacMahon S, Chalmers J. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358: 2560-2572
- 16 Ismail-Beigi F, Craven T, Banerji MA. et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 2010; 376: 419-430
- 17 Duckworth W, Abraira C, Moritz T. et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009; 360: 129-139
- 18 Zinman B, Wanner C, Lachin JM. et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015; 373: 2117-2128
- 19 Wanner C, Inzucchi SE, Lachin JM. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 2016; 375: 323-334
- 20 Cherney DZ, Perkins BA, Soleymanlou N. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 2014; 129: 587-597
- 21 Marso SP, Daniels GH, Brown-Frandsen K. et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016; 375: 311-322
- 22 Kovesdy CP. Metabolic acidosis and kidney disease: does bicarbonate therapy slow the progression of CKD?. Nephrol Dial Transplant 2012; 27: 3056-3062
- 23 Hsu RK, Hsu CY. The Role of Acute Kidney Injury in Chronic Kidney Disease. Semin Nephrol 2016; 36: 283-292
- 24 Sawhney S, Marks A, Fluck N. et al. Post-discharge kidney function is associated with subsequent ten-year renal progression risk among survivors of acute kidney injury. Kidney Int 2017;
- 25 Klahr S, Levey AS, Beck GJ. et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med 1994; 330: 877-884
- 26 Menon V, Kopple JD, Wang X. et al. Effect of a very low-protein diet on outcomes: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am J Kidney Dis 2009; 53: 208-217
- 27 Dunkler D, Kohl M, Heinze G. et al. Modifiable lifestyle and social factors affect chronic kidney disease in high-risk individuals with type 2 diabetes mellitus. Kidney Int 2015; 87: 784-791
- 28 Staplin N, Haynes R, Herrington WG. et al. Smoking and Adverse Outcomes in Patients With CKD: The Study of Heart and Renal Protection (SHARP). Am J Kidney Dis 2016; 68: 371-380
- 29 Goicoechea M, de Vinuesa SG, Verdalles U. et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 2010; 5: 1388-1393
- 30 UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837-853
- 31 Nathan DM, Zinman B, Cleary PA. et al. Modern-day clinical course of type 1 diabetes mellitus after 30 years’ duration: the diabetes control and complications trial/epidemiology of diabetes interventions and complications and Pittsburgh epidemiology of diabetes complications experience (1983–2005).. Arch Intern Med 2009; 169: 1307-1316