Klin Padiatr 2017; 229(01): 14-20
DOI: 10.1055/s-0042-117831
Review
© Georg Thieme Verlag KG Stuttgart · New York

Need for Better Diabetes Treatment: The Therapeutic Potential of NMDA Receptor Antagonists

Bessere Diabetesmedikamente sind erforderlich: therapeutisches Potenzial von NMDAR Antagonisten
A. Welters
1   Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital Düsseldorf, Germany
,
E. Lammert
2   Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital Düsseldorf, Germany
,
E. Mayatepek
1   Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital Düsseldorf, Germany
,
T. Meissner
1   Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital Düsseldorf, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
14 December 2016 (online)

Abstract

Diabetes mellitus is the most common metabolic disorder in children and adolescents. Optimal control of blood glucose concentration is essential to prevent acute and diabetic long-term complications. The options to treat diabetes have clearly improved over the last decades, however, to date neither type 1 diabetes nor type 2 diabetes mellitus can be cured. Therefore, diabetes research aims at developing β-cell protective agents that prevent or even reverse diabetes onset. N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that are widely expressed in the central nervous system (CNS) where they hold central roles in CNS function. NMDAR dysfunction is associated with several neurological and psychiatric disorders and therefore NMDAR modulators have several potential therapeutic indications. Only little is known about the role of pancreatic NMDA receptors. Our data provide evidence that inhibition of pancreatic NMDARs, either genetically or pharmacologically with the over-the-counter drug dextromethorphan, increases glucose-stimulated insulin secretion from mouse and human pancreatic islets, improves glucose tolerance in mice and individuals with diabetes and promotes islet cell survival under diabetogenic conditions. Thus, our data indicate for the first time that NMDAR antagonists could serve as adjunct treatment for diabetes mellitus. The development of a safe, blood glucose lowering and particularly β-cell protective medication would significantly enhance current diabetes treatment.

Zusammenfassung

Diabetes mellitus ist die häufigste Stoffwechselerkrankung des Kindes- und Jugendalters. Eine optimale Blutzuckereinstellung ist essentiell, um Akut- sowie diabetische Langzeitkomplikationen zu verhindern. Die Möglichkeiten Diabetes zu behandeln haben sich in den letzten Jahrzehnten zwar deutlich verbessert, jedoch ist bis heute weder der Typ 1 Diabetes noch der Typ 2 Diabetes mellitus heilbar. Ziel der Diabetesforschung ist es daher, betazellprotektive Medikamente zu entwickeln, die das Auftreten eines Diabetes verhindern, oder sogar einen bestehenden Diabetes heilen können. N-Methyl-D-Aspartat Rezeptoren (NMDAR) sind Glutamat gesteuerte Ionenkanäle, die in großer Zahl im zentralen Nervensystem (ZNS) exprimiert werden, wo sie zentrale Rollen für die Funktionen des ZNS einnehmen. Fehlfunktionen der NMDAR sind mit mehreren neurologischen und psychiatrischen Erkrankungen assoziiert und NMDAR Modulatoren haben daher verschiedene potentielle therapeutische Indikationen. Bisher ist nur wenig über die Funktion pankreatischer NMDAR bekannt. Unsere Daten deuten erstmals darauf hin, dass die Inhibition pankreatischer NMDAR, entweder genetisch oder pharmakologisch mit dem frei verkäuflichen NMDAR Antagonisten Dextromethorphan, die glukose-stimulierte Insulinsekretion muriner und menschlicher Langerhans-Inseln steigert, in Mausmodellen sowie bei Diabetikern die Glukosetoleranz verbessert und unter diabetogenen Bedingungen Inselzellschutz vermittelt. Zusammenfassend deuten unsere Arbeiten erstmals darauf hin, dass NMDAR Antagonisten die Therapie des Diabetes mellitus ergänzen könnten. Die Entwicklung eines nebenwirkungsarmen, blutzuckersenkenden und vor allem betazellprotektiven Medikamentes würde die Therapie des Diabetes mellitus signifikant aufwerten.

 
  • References

  • 1 Abdul-Rasoul M, Habib H, Al-Khouly M. ‘The honeymoon phase’ in children with type 1 diabetes mellitus: frequency, duration, and influential factors. Pediatr Diabetes 2006; 7: 101-107
  • 2 Abdulreda MH, Rodriguez-Diaz R, Caicedo A. et al. Liraglutide Compromises Pancreatic beta Cell Function in a Humanized Mouse Model. Cell Metabolism 2016; 23: 541-546
  • 3 Aharon-Hananel G, Jorns A, Lenzen S. et al. Antidiabetic effect of interleukin-1beta antibody therapy through beta-cell protection in the cohen diabetes-sensitive rat. Diabetes 2015; 64: 1780-1785
  • 4 Bailey CJ, Tahrani AA, Barnett AH. Future glucose-lowering drugs for type 2 diabetes. Lancet Diabetes Endocrinol 2016;
  • 5 Ben Nasr M, D’ Addio F, Usuelli V. et al. The rise, fall, and resurgence of immunotherapy in type 1 diabetes. Pharmacol Res 2015; 98: 31-38
  • 6 Beyerlein A, Chmiel R, Hummel S. et al. Timing of gluten introduction and islet autoimmunity in young children: updated results from the BABYDIET study. Diabetes Care 2014; 37: e194-e195
  • 7 Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464: 1293-1300
  • 8 Cameron FJ, Wherrett DK. Care of diabetes in children and adolescents: controversies, changes, and consensus. Lancet 2015; 385: 2096-2106
  • 9 Di Cairano E, Davalli AM, Perego L. et al. The Glial glutamate transporter 1 (glt1) is expressed by pancreatic beta-cells and prevents glutamate-induced beta-cell death. Journal of Biological Chemistry 2011; 286: 14007-14018
  • 10 Diabetes DE. Deutscher Gesundheitsbericht Diabetes 2016. 2016
  • 11 Dicpinigaitis PV. Clinical perspective – cough: an unmet need. Curr Opin Pharmacol 2015; 22: 24-28
  • 12 Donath MY, Storling J, Berchtold LA. et al. Cytokines and beta-cell biology: from concept to clinical translation. Endocr Rev 2008; 29: 334-350
  • 13 Eberhard D. Neuron and beta-cell evolution: learning about neurons is learning about beta-cells. Bioessays 2013; 35: 584
  • 14 Garnock-Jones KP. Dextromethorphan/quinidine: in pseudobulbar affect. CNS Drugs 2011; 25: 435-445
  • 15 George MM, Copeland KC. Current treatment options for type 2 diabetes mellitus in youth: today’s realities and lessons from the TODAY study. Curr Diab Rep 2013; 13: 72-80
  • 16 Gonoi T, Mizuno N, Inagaki N. et al. Functional neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MIN6. J Biol Chem 1994; 269: 16989-19992
  • 17 Hagopian W, Ferry Jr RJ, Sherry N. et al. Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protege trial. Diabetes 2013; 62: 3901-3908
  • 18 Hamosh A, Maher JF, Bellus GA. et al. Long-term use of high-dose benzoate and dextromethorphan for the treatment of nonketotic hyperglycinemia. Journal of Pediatrics 1998; 132: 709-713
  • 19 Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010; 11: 682-696
  • 20 Inagaki N, Kuromi H, Gonoi T. et al. Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J 1995; 9: 686-691
  • 21 International Diabetes Federation. IDF Diabetes Atlas 7th edn. Brussels, Belgium: International Diabetes Federation; 2015
  • 22 Jung KY, Kim KM, Lim S. Therapeutic Approaches for Preserving or Restoring Pancreatic beta-Cell Function and Mass. Diabetes Metab J 2014; 38: 426-436
  • 23 Keenan HA, Sun JK, Levine J. et al. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 2010; 59: 2846-2853
  • 24 Kiess W, Gorski T, Penke M. et al. Diabetes mellitus in children and adolescents – a global epidemic which has become neglected. J Pediatr Endocrinol Metab 2015; 28: 247-250
  • 25 Klinke 2nd DJ. Extent of beta cell destruction is important but insufficient to predict the onset of type 1 diabetes mellitus. Plos One 2008; 3: e1374
  • 26 Knip M, Akerblom HK, Becker D. et al. Hydrolyzed infant formula and early beta-cell autoimmunity: a randomized clinical trial. JAMA 2014; 311: 2279-2287
  • 27 Kovatchev BP, Renard E, Cobelli C. et al. Feasibility of outpatient fully integrated closed-loop control: first studies of wearable artificial pancreas. Diabetes Care 2013; 36: 1851-1858
  • 28 Lee YS, Jun HS. Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism 2014; 63: 9-19
  • 29 Liu SL, Li YH, Shi GY. et al. Dextromethorphan reduces oxidative stress and inhibits atherosclerosis and neointima formation in mice. Cardiovasc Res 2009; 82: 161-169
  • 30 Lohmann T, Nietzschmann U, Kiess W. “Lady-like”: is there a latent autoimmune diabetes in the young?. Diabetes Care 2000; 23: 1707-1708
  • 31 Maechler P, Wollheim CB. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 1999; 402: 685-689
  • 32 Marquard J, Otter S, Welters A. et al. Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med 2015; 21: 363-372
  • 33 Marquard J, Stirban A, Schliess F. et al. Effects of dextromethorphan as add-on to sitagliptin on blood glucose and serum insulin concentrations in individuals with type 2 diabetes mellitus: a randomized, placebo-controlled, double-blinded, multiple crossover, single-dose clinical trial. Diabetes Obesity & Metabolism 2016; 18: 100-103
  • 34 Md Moin AS, Dhawan S, Shieh C. et al. Increased hormone-negative endocrine cells in the pancreas in type 1 diabetes. J Clin Endocrinol Metab 2016; jc20161350
  • 35 Meier JJ, Bhushan A, Butler AE. et al. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration?. Diabetologia 2005; 48: 2221-2228
  • 36 Molnar E, Varadi A, McIlhinney RA. et al. Identification of functional ionotropic glutamate receptor proteins in pancreatic beta-cells and in islets of Langerhans. FEBS Lett 1995; 371: 253-257
  • 37 Nanto-Salonen K, Kupila A, Simell S. et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet 2008; 372: 1746-1755
  • 38 Nelson KA, Park KM, Robinovitz E. et al. High-dose oral dextromethorphan versus placebo in painful diabetic neuropathy and postherpetic neuralgia. Neurology 1997; 48: 1212-1218
  • 39 Nguyen L, Thomas KL, Lucke-Wold BP. et al. Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders. Pharmacol Ther 2016; 159: 1-22
  • 40 Nimri R, Muller I, Atlas E. et al. MD-Logic overnight control for 6 weeks of home use in patients with type 1 diabetes: randomized crossover trial. Diabetes Care 2014; 37: 3025-3032
  • 41 Otter S, Lammert E. Exciting Times for Pancreatic Islets: Glutamate Signaling in Endocrine Cells. Trends Endocrinol Metab 2015;
  • 42 Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013; 14: 383-400
  • 43 Pozzilli P, Battelino T, Danne T. et al. Continuous subcutaneous insulin infusion in diabetes: patient populations, safety, efficacy, and pharmacoeconomics. Diabetes Metab Res Rev 2016; 32: 21-39
  • 44 Qiang G, Xue S, Yang JJ. et al. Identification of a small molecular insulin receptor agonist with potent antidiabetes activity. Diabetes 2014; 63: 1394-1409
  • 45 Raab J, Haupt F, Scholz M. et al. Capillary blood islet autoantibody screening for identifying pre-type 1 diabetes in the general population: design and initial results of the Fr1da study. BMJ Open 2016; 6: e011144
  • 46 Reinehr T. Type 2 diabetes mellitus in children and adolescents. World J Diabetes 2013; 4: 270-281
  • 47 Reinehr T, Schober E, Wiegand S. et al. Beta-cell autoantibodies in children with type 2 diabetes mellitus: subgroup or misclassification?. Arch Dis Child 2006; 91: 473-477
  • 48 Retnakaran R, Kramer CK, Choi H. et al. Liraglutide and the preservation of pancreatic beta-cell function in early type 2 diabetes: the LIBRA trisal. Diabetes Care 2014; 37: 3270-3278
  • 49 Rosenbauer J, Stahl A. Häufigkeit des Diabetes mellitus im Kindes- und Jugendalter in Deutschland. Der Diabetologe 2010; 6: 177-189
  • 50 Roshanravan H, Kim EY, Dryer SE. NMDA receptors as potential therapeutic targets in diabetic nephropathy: Increased renal NMDA receptor subunit expression in Akita mice and reduced nephropathy following sustained treatment with memantine or MK-801. Diabetes 2016;
  • 51 Sabbah E, Savola K, Kulmala P. et al. Diabetes-associated autoantibodies in relation to clinical characteristics and natural course in children with newly diagnosed type 1 diabetes. The Childhood Diabetes In Finland Study Group. J Clin Endocrinol Metab 1999; 84: 1534-1539
  • 52 Simmons KM, Michels AW. Type 1 diabetes: A predictable disease. World J Diabetes 2015; 6: 380-390
  • 53 Siu A, Drachtman R. Dextromethorphan: a review of N-methyl-d-aspartate receptor antagonist in the management of pain. CNS Drug Rev 2007; 13: 96-106
  • 54 Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005; 365: 1333-1346
  • 55 Tahrani AA, Bailey CJ, Del Prato S. et al. Management of type 2 diabetes: new and future developments in treatment. Lancet 2011; 378: 182-197
  • 56 Tortella FC, Martin DA, Allot CP. et al. Dextromethorphan attenuates post-ischemic hypoperfusion following incomplete global ischemia in the anesthetized rat. Brain Res 1989; 482: 179-183
  • 57 Werling LL, Lauterbach EC, Calef U. Dextromethorphan as a potential neuroprotective agent with unique mechanisms of action. Neurologist 2007; 13: 272-293
  • 58 Willi SM, Martin K, Datko FM. et al. Treatment of type 2 diabetes in childhood using a very-low-calorie diet. Diabetes Care 2004; 27: 348-353
  • 59 Wu TC, Chao CY, Lin SJ. et al. Low-dose dextromethorphan, a NADPH oxidase inhibitor, reduces blood pressure and enhances vascular protection in experimental hypertension. Plos One 2012; 7: e46067
  • 60 Zhu S, Stein RA, Yoshioka C. et al. Mechanism of NMDA Receptor Inhibition and Activation. Cell 2016; 165: 704-714
  • 61 Ziegler AG, Rewers M, Simell O. et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013; 309: 2473-2479