Subscribe to RSS
DOI: 10.1055/s-0042-118599
Magnetresonanzmikroskopie des Akkommodationsapparats
Magnetic Resonance Microscopy of the Accommodative ApparatusPublication History
eingereicht 15 September 2016
akzeptiert 04 October 2016
Publication Date:
16 December 2016 (online)
Zusammenfassung
Die Ultrahochfeld-Magnetresonanzmikroskopie (MRM) erlaubt die Akquisition von Magnetresonanzbildern (MR-Bildern) mit einer Auflösung im Submillimeterbereich. Damit ermöglicht sie eine weitestgehend artefaktfreie, untersucherunabhängige Darstellung der Strukturen und der Konfiguration des humanen Auges, die üblicherweise durch herkömmliche Visualisierungstechniken nicht erreicht werden kann. Der vorliegende Artikel korreliert die MRM des anterioren Augenabschnitts und des Akkommodationsapparats bei 9,4 Tesla mit der konventionellen Histologie.
Abstract
Magnetic resonance microscopy (MRM) at ultra-high magnetic fields allows acquisition of high resolution MR images in the micrometre range. The use of ultra-high magnetic fields opens the possibility of user-independent and artefact-free detailed characterisation of the anatomical tissue of the human eye, which is not achievable with classical imaging techniques. This article correlates MRM of the anterior eye segment and the accommodative apparatus at 9.4 Tesla with conventional histology.
-
Literatur
- 1 Timoney PJ, Breathnach CS. Allvar Gullstrand and the slit lamp 1911. Ir J Med Sci 2013; 182: 301-305
- 2 Fink W. Refractive correction method for digital charge-coupled device-recorded Scheimpflug photographs by means of ray tracing. J Biomed Opt 2005; 10: 024003
- 3 Linnola RJ, Findl O, Hermann B et al. Intraocular lens-capsular bag imaging with ultrahigh-resolution optical coherence tomography pseudophakic human autopsy eyes. J Cataract Refract Surg 2005; 31: 818-823
- 4 Hovakimyan M, Falke K, Stahnke T et al. Morphological analysis of quiescent and activated keratocytes: a review of ex vivo and in vivo findings. Curr Eye Res 2014; 39: 1129-1144
- 5 Stachs O, Martin H, Behrend D et al. Three-dimensional ultrasound biomicroscopy, environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation. Graefes Arch Clin Exp Ophthalmol 2006; 244: 836-844
- 6 Stachs O, Martin H, Kirchhoff A et al. Monitoring accommodative ciliary muscle function using three-dimensional ultrasound. Graefes Arch Clin Exp Ophthalmol 2002; 240: 906-912
- 7 Apple DJ, Mamalis N, Olson RJ et al. Intraocular Lenses. Evolution, Designs, Complications, and Pathology. Baltimore, MD, USA: Williams & Wilkins; 1989: 172
- 8 Langner S, Martin H, Terwee T et al. 7.1 T MRI to assess the anterior segment of the eye. Invest Ophthalmol Vis Sci 2010; 51: 6575-6581
- 9 Langner S, Krueger PC, Stachs O et al. [MR microscopy of the human eye]. Klin Monatsbl Augenheilkd 2011; 228: 1073-1078
- 10 Lindner T, Langner S, Graessl A et al. High spatial resolution in vivo magnetic resonance imaging of the human eye, orbit, nervus opticus and optic nerve sheath at 7.0 Tesla. Exp Eye Res 2014; 125: 89-94
- 11 Webb AG, Van de Moortele PF. The technological future of 7 T MRI hardware. NMR Biomed 2016; 29: 1305-1315
- 12 Lindner T, Langner S, Falke K et al. Anatomic and pathological characterization of choroidal melanoma using multimodal imaging: what is practical, what is needed?. Melanoma Res 2015; 25: 252-258
- 13 Lindner T, Langner S, Paul K et al. [Diffusion weighted magnetic resonance imaging and its application in ophthalmology]. Klin Monatsbl Augenheilkd 2015; 232: 1386-1391
- 14 Paul K, Graessl A, Rieger J et al. Diffusion-sensitized ophthalmic magnetic resonance imaging free of geometric distortion at 3.0 and 7.0 T: a feasibility study in healthy subjects and patients with intraocular masses. Invest Radiol 2015; 50: 309-321