Der Nuklearmediziner 2017; 40(01): 64-71
DOI: 10.1055/s-0042-123616
Update Herz / Lunge
© Georg Thieme Verlag KG Stuttgart · New York

Nuklearkardiologische Anwendungen am PET/MRT

Application of PET/MR imaging in cardiology
Sazan Rasul
1   Klinische Abteilung für Nuklearmedizin, Medizinische Universität Wien
,
Martin Lyngby Lassen
2   Zentrum für Medizinische Physik und Biomedizinische Technik, Medizinische Universität Wien
,
Marcus Hacker
1   Klinische Abteilung für Nuklearmedizin, Medizinische Universität Wien
› Author Affiliations
Further Information

Publication History

Publication Date:
25 April 2017 (online)

Zusammenfassung

Positronenemissionstomografie (PET) und Magnetresonanz-Tomographie (MRT) spielen eine wichtige Rolle in der Diagnose von kardiovaskulären Erkrankungen. Während die kardiale MRT als ein diagnostischer Bildgebungsstandard für die Bestimmung allgemeiner kardialer Pathomorphologien, ventrikulärer und valvulärer Funktionenmessungen und Entdeckung und Quantifizierung myokardialer Narbengewebe gilt, werden kardiale PET-Untersuchungen unter Verwendung einer Vielzahl von Radiopharmaka zur Bestimmung der Myokardischämielast und des Myokardviabilitätgrads sowie Diagnostik myokardialer Entzündungen und Tumoren verwendet.

Abstract

It is well established that positron emission tomography (PET) and magnetic resonance imaging (MRI) play important roles in the diagnosis of various cardiovascular diseases. While cardiac MRI is regarded as a standard diagnostic imaging method for determining cardiac general morphologies, assessing and quantifying ventricular and valvular functions and detecting myocardial scar tissues, cardiac PET examinations, using varieties of well-known clinical applicable tracers, are frequently applied to determine the degree of myocardial ischemia and myocardial viability as well as presence and extend of myocardial inflammation and myocardial tumors. However, with recent discovery of an integrated PET/MRI a new approach has been introduced to the diagnostic fields of cardiovascular disorders. Combining both of these modalities in a single examination gives plenty of information that might interfere with the clinical utility of the integrated PET/MRI. Therefore, in this work we aimed to explain the exact role of the combined PET/MRI in cardiovascular imaging and cardiovascular diseases. We further aimed to show the technical issues of cardiac PET/MRI and try to find the cardiovascular diseases that might potentially get benefit from this combined PET/MRI.

 
  • Literatur

  • 1 Bailey DL, Antoch G, Bartenstein P. et al. Combined PET/MR: The real work has just started. Summary Report of the Third International Workshop on PET/MR Imaging; February 17–21, 2014, Tübingen, Germany. Mol Imaging Biol 2015; 17: 297-312
  • 2 Buchbender C, Hartung-Knemeyer V, Forsting M. et al. Positron emission tomography (PET) attenuation correction artefacts in PET/CT and PET/MRI. Br J Radiol 2013; 86: 20120570
  • 3 Campbell P, Stewart GC, Padera RF. et al. Evaluation for cardiac sarcoidosis: uncertainty despite contemporary multi-modality imaging [abstract]. J Card Fail 2010; 16 suppl S107
  • 4 Carney JP, Townsend DW, Rappoport V. et al. Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys 2006; 33: 976-983
  • 5 Dahlbom M, Hoffmann EJ, Hoh CK. et al. Whole-body positron emission tomography: Part I. Methods and performance characteristics. Journal of Nuclear Med 1992; 33: 1191-1199
  • 6 De Bruyne B, Pijls NH, Kalesan B. et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012; 367: 991-1001
  • 7 Delso G, Furst S, Jakoby B. et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 2011; 52: 1914-1922
  • 8 Delso G, Martinez-Möller A, Bundschuh RA. et al. Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner. Phys Med Biol 2010; 55: 4361-4374
  • 9 Eitel I, Lücke C, Grothoff M. et al. Inflammation in takotsubo cardiomyopathy: insights from cardiovascular magnetic resonance imaging. Eur Radiol 2010; 20: 422-431
  • 10 Erba PA, Sollini M, Lazzeri E. et al. FDG-PET in cardiac infections. Semin Nucl Med 2013; 43: 377-395
  • 11 Fallavollita JA, Heavey BM, Luisi Jr. AJ. et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 2014; 63: 141-149
  • 12 Friedrich MG, Sechtem U, Schulz-Menger J. et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. Journal of the American College of Cardiology 2009; 53: 1475-1487
  • 13 Ghotbi AA, Kjaer A, Hasbak P. Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging. Clin Physiol Funct Imaging 2014; 34: 163-170
  • 14 Greulich S, Deluigi CC, Gloekler S. et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging 2013; 6: 501-511
  • 15 Grothoff M, Elpert C, Hoffmann J. et al. Right ventricular injury in ST-elevation myocardial infarction: risk stratification by visualization of wall motion, edema, and delayed-enhancement cardiac magnetic resonance. Circ Cardiovasc Imaging 2012; 5: 60-68
  • 16 Gutberlet M, Spors B, Thoma T. et al. Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology 2008; 246: 401-409
  • 17 Hagemann CE, Ghotbi AA, Kjær A. et al. Quantitative myocardial blood flow with Rubidium-82 PET: a clinical perspective. Am J Nucl Med Mol Imaging 2015; 5: 457-468
  • 18 Harms HJ, Lubberink M, de Haan S. et al. Use of a single 11C-meta-hydroxyephedrine scan for assessing flow-innervation mismatches in patients with schemic cardiomyopathy. J Nucl Med 2015; 56: 1706-1711
  • 19 He Y, Pang J, Dai Q. et al. Diagnostic performance of self-navigated whole-heart contrast-enhanced coronary 3-T MR angiography. Radiology 2016; 17: 152514
  • 20 Hendel RC, Berman DS, Di Carli MF. et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging: A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol 2009 53: 2201-2229
  • 21 Hundley WG, Bluemke DA, Finn JP. et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 2010 55: 2614-2662
  • 22 Ishida Y, Yoshinaga K, Miyagawa M. et al. Recommendations for (18)F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology recommendations. Ann Nucl Med 2014; 28: 393-403
  • 23 Judenhofer MS, Wehrl HF, Newport DF. et al. Simultaneous PET-MRI: A new approach for functional and morphological imaging. Nat Med 2008; 14: 459-465
  • 24 Kandler D, Lücke C, Grothoff M. et al. The relation between hypointense core, microvascular obstruction and intramyocardial haemorrhage in acute reperfused myocardial infarction assessed by cardiac magnetic resonance imaging. Eur Radiol 2014; 24: 3277-3288
  • 25 Krieghoff C, Barten MJ, Hildebrand L. et al. Assessment of sub-clinical acute cellular rejection after heart transplantation: comparison of cardiac magnetic resonance imaging and endomyocardial biopsy. Eur Radiol 2014; 24: 2360-2371
  • 26 Langwieser N, von Olshausen G, Rischpler C. et al. Confirmation of diagnosis and graduation of inflammatory activity of Loeffler endocarditis by hybrid positron emission tomography/magnetic resonance imaging. Eur Heart J 2014; 35: 2496
  • 27 Lurz P, Luecke C, Eitel I. et al. Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: The MyoRacer-Trial. J Am Coll Cardiol 2016; 67: 1800-1811 doi:10.1016/j.jacc.2016.02.013
  • 28 Manabe O, Yoshinaga K, Ohira H. et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol 2016; 23: 244-252
  • 29 Martinez-Moller A, Souvatzoglou M, Delso G. et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009; 50: 520-526
  • 30 Morton G, Chiribiri A, Ishida M. et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol 2012; 60: 1546-1555
  • 31 Montalescent et al. 2013; ESC guidelines on the management of stable coronary artery disease. Eur Heart Journal 2013; 34: 2449-3003
  • 32 Nekolla SG, Martinez-Moeller A, Saraste A. PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med Mol Imaging 2009; 36 (Suppl. 01) S121-S130
  • 33 Nensa F, Poeppel TD, Beiderwellen K. et al. Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology 2013; 268: 366-373
  • 34 Nensa F, Poeppel TD, Krings P. et al. Multiparametric assessment of myocarditis using simultaneous positron emission tomography/magnetic resonance imaging. Eur Heart J 2014; 35: 2173
  • 35 Nensa F, Tezgah E, Poeppel T. et al. Diagnosis and treatment response evaluation of cardiac sarcoidosis using positron emission tomography/magnetic resonance imaging. Eur Heart J 2015; 36: 550
  • 36 Nensa F, Tezgah E, Poeppel TD. et al. Integrated 18F-FDG PET/MR imaging in the assessment of cardiac masses: a pilot study. J Nucl Med 2015; 56: 255-260
  • 37 Nensa F, Tezgah E, Schweins K. et al. Evaluation of a low-carbohydrate diet-based preparation protocol without fasting for cardiac PET/MR imaging. J Nucl Cardiol 2016; 18
  • 38 Ohira H, Birnie DH, Pena E. et al. Comparison of F-fluorodeoxyglucose positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) in corticosteroid-naive patients with conduction system disease due to cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2016; 43: 259-269
  • 39 Pagé M, Quarto C, Mancuso E et al. Metabolically active brown fat mimicking pericardial metastasis on PET/CT: The discriminating role of cardiac magnetic resonance imaging. Can J Cardiol 2015 pii: S0828-282X(15)01500-7
  • 40 Paulus DH, Braun H, Aklan B. et al. Simultaneous PET/MR imaging: MR-based attenuation correction of local radiofrequency surface coils. Med Phys 2012; 39: 4306-4315
  • 41 Paulus DH, Tellmann L, Quick HH. Towards improved hardware component attenuation correction in PET/MR hybrid imaging. Phys Med Biol 2013; 58: 8021-8040
  • 42 Petibon Y, Ouyang J, Zhu X. et al. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study. Phys Med Biol 2013; 58: 2085-2102
  • 43 Pham N, Zaitoun H, Mohammed TL. et al. Complications of aortic valve surgery: manifestations at CT and MR imaging. Radiographics 2012; 32: 1873-1892
  • 44 Pichler BJ, Judenhofer MS, Catana C. et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006; 47: 639-647
  • 45 Quick HH. Integrated PET/MR. J Magn Reson Imaging 2014; 39: 243-258
  • 46 Rahbar K, Seifarth H, Schäfers M. et al. Nucl Med 2012; 53: 856-863
  • 47 Rischpler C, Langwieser N, Souvatzoglou M. et al. PET/MRI early after myocardial infarction: evaluation of viability with late gadolinium enhancement transmurality vs. 18F-FDG uptake. Eur Heart J Cardiovasc Imaging 2015; 16: 661-669
  • 48 Samarin A, Burger C, Wollenweber SD. et al. PET/MR imaging of bone lesions – implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 2012; 39: 1154-1160
  • 49 Schatka I, Bengel FM. Imaging of Cardiac Sarcoidosis. J Nucl Med 2013; 55: 99-106
  • 50 Schlosser T, Nensa F, Mahabadi AA. et al. Hybrid MRI/PET of the heart: a new complementary imaging technique for simultaneous acquisition of MRI and PET data. Heart 2013; 99: 351-352
  • 51 Schneider S, Batrice A, Rischpler C. et al. Utility of multimodal cardiac imaging with PET/MRI in cardiac sarcoidosis: implications for diagnosis, monitoring and treatment. Eur Heart J 2014; 35: 312
  • 52 Scholtens AM, Verberne HJ, Budde RP. et al. Additional heparin pre-administration improves cardiac glucose metabolism suppression over low carbohydrate diet alone in 18F-FDG-PET imaging. J Nucl Med 2016; 57: 568-573
  • 53 Sherif HM, Nekolla SG, Saraste A. et al. Simplified quantification of myocardial flow reserve with flurpiridaz F 18: validation with microspheres in a pig model. J Nucl Med 2011; 52: 617-624
  • 54 Stillman AE, Oudkerk M, Bluemke D. et al. North American Society of Cardiovascular Imaging; European Society of Cardiac Radiology . Assessment of acute myocardial infarction: current status and recommendations from the North American society for Cardiovascular Imaging and the European Society of Cardiac Radiology. Int J Cardiovasc Imaging 2011; 27: 7-24
  • 55 Takx RA, Blomberg BA, El Aidi H et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging 2015; 8: pii: e002666
  • 56 Tavakol M, Ashraf S, Brener SJ. Risks and complications of coronary angiography: a comprehensive review. Global journal of health science 2012; 4: 65-93
  • 57 Tellmann L, Quick HH, Bockisch A. et al. The effect of MR surface coils on PET quantification in whole-body PET/MR: results from a pseudo-PET/MR phantom study. Med Phys 2011; 38: 2795-2805
  • 58 Vermeltfoort IA, Raijmakers PG, Lubberink M. et al. Feasibility of subendocardial and subepicardial myocardial perfusion measurements in healthy normals with 15O-labeled water and positron emission tomography. J Nucl Cardiol 2011; 18: 650-656
  • 59 von Olshausen G, Hyafil F, Langwieser N. et al. Detection of acute inflammatory myocarditis in Epstein Barr virus infection using hybrid 18F-fluoro-deoxyglucose-positron emission tomography/magnetic resonance imaging. Circulation 2014; 130: 925-926
  • 60 White JA, Rajchl M, Butler J. et al. Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography – magnetic resonance imaging for the diagnosis of cardiac disease. Circulation 2013; 127: e639-e641
  • 61 Wicks E, Menezes L, Pantazis A. et al. 135 Novel hybrid positron emission tomography – magnetic resonance (PET-MR) multi-modality inflammatory imaging has improved diagnostic accuracy for detecting cardiac sarcoidosis. Heart 2014; 100: A80
  • 62 Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR American journal of roentgenology 2008; 190: W151-W156
  • 63 Wu C, Li F, Niu G. et al. PET imaging of inflammation biomarkers. Theranostics 2013; 3: 448-466
  • 64 Yaddanapudi K, Brunken R, Tan CD. et al. PET-MR Imaging in evaluation of cardiac and paracardiac masses with histopathologic correlation. JACC Cardiovasc Imaging 2016; 9: 82-85
  • 65 Youssef G, Leung E, Mylonas I. et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the On-tario experience. J Nucl Med 2012; 53: 241-248