Planta Med 2017; 83(12/13): 1044-1052
DOI: 10.1055/s-0042-124493
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Biosynthetic Studies on Acetosellin and Structure Elucidation of a New Acetosellin Derivative[*]

Peter Hufendiek
1   Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
,
Simon Stephan Martin Stölben
1   Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
,
Stefan Kehraus
1   Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
,
Nicole Merten
1   Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
,
Henrik Harms
1   Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
,
Max Crüsemann
1   Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
,
Idris Arslan
4   Biomedical Engineering, Pamukkale University, Denizli, Turkey
,
Michael Gütschow
2   Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
,
Tanja Schneider
3   Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, Bonn, Germany
,
Gabriele Maria König
1   Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
› Author Affiliations
Further Information

Publication History

received 07 October 2016
revised 13 December 2016

accepted 16 December 2016

Publication Date:
12 January 2017 (online)

Abstract

Natural products from fungi, especially Ascomycota, play a major role in therapy and drug discovery. Fungal strains originating from marine habitats offer a new avenue for finding unusual molecular skeletons. Here, the marine-derived fungus Epicoccum nigrum (strain 749) was found to produce the azaphilonoid compounds acetosellin and 5′,6′-dihydroxyacetosellin. The latter is a new natural product. The biosynthesis of these polyketide-type compounds is intriguing, since two polyketide chains are assembled to the final product. Here we performed 13C labeling studies on solid cultures to prove this hypothesis for acetosellin biosynthesis.

* Dedicated to Prof. Max Wichtl in recognition of his outstanding contribution to pharmacognosy research.


Supporting Information

Spectroscopic data including UV, CD, IR, 1H NMR, 13C NMR, 2D-NMR, and LCESIMS, and data of bioassays of compounds 1 and 2 as well as labeling experiments are available as Supporting Information.

 
  • References

  • 1 Gao JM, Yang SX, Qin JC. Azaphilones: chemistry and biology. Chem Rev 2013; 113: 4755-4811
  • 2 Osmanova N, Schultze W, Ayoub N. Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 2010; 9: 315-342
  • 3 Coghlan DR, Mackintosh JA, Karuso P. Mechanism of reversible fluorescent staining of protein with epicocconone. Org Lett 2005; 7: 2401-2404
  • 4 Wei WG, Yao ZJ. Synthesis studies toward chloroazaphilone and vinylogous γ-pyridones: two common natural product core structures. J Org Chem 2005; 70: 4585-4590
  • 5 Lin TF, Yakushijin K, Büchi GH, Demain AL. Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. J Ind Microbiol 1992; 9: 173-179
  • 6 Nasini G. Structure and absolute configuration of acetosellin, a new polyketide from a phytotoxic strain of Cercosporella acetosella . Tetrahedron Lett 2002; 43: 1665-1668
  • 7 Plitzko I. Zur Biosynthese des Borrelidins sowie Isolierung und Strukturaufklärung von Sekundärmetaboliten aus marinen und terrestrischen Mikroorganismen [Phd thesis]. University of Göttingen; 2007 Available at http://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-0006-AC9D-3/plitzko.pdf?sequence=1 Accessed June 3, 2015
  • 8 Van Ginkel R, Selwood A, Wilkins AL, Ford S, Calder C. Anti-microbial compositions. Patent US2012/0108526 A1, 2012
  • 9 Nazir M, El Maddah F, Kehraus S, Egereva E, Piel J, Brachmann AO, König GM. Phenalenones: insight into the biosynthesis of polyketides from the marine alga-derived fungus Coniothyrium cereale . Org Biomol Chem 2015; 13: 8071-8079
  • 10 Cox RJ. Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org Biomol Chem 2007; 5: 2010
  • 11 Zabala AO, Xu W, Chooi YH, Tang Y. Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. Chem Biol 2012; 19: 1049-1059
  • 12 Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 2013; 97: 6337-6345
  • 13 Bell PJL, Karuso P. Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum . J Am Chem Soc 2003; 125: 9304-9305
  • 14 Akihisa T, Tokuda H, Ukiya M, Kiyota A, Yasukawa K, Sakamoto N, Kimura Y, Suzuki T, Takayasu J, Nishino H. Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem Biodivers 2005; 2: 1305-1309
  • 15 Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H. Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (Red-Mold Rice) and their chemopreventive effects. J Agric Food Chem 2005; 53: 562-565
  • 16 Stadler M, Anke H, Dekermendjian K, Reiss R, Sterner O, Witt R. Novel bioactive azaphilones from fruit bodies and mycelial cultures of the ascomycete Bulgaria inquinans (Fr.). Nat Prod Res 1995; 7: 7-14
  • 17 Wang GYS, Borgeson BM, Crews P. Pitholides A–D, polyketides from a marine tunicate-derived culture of Pithomyces sp. Tetrahedron Lett 1997; 38: 8449-8452
  • 18 Anke H, Kemmer T, Höfle G. Deflectins, new antimicrobial azaphilones from Aspergillus deflectus . J Antibiot (Tokyo) 1981; 34: 923-928
  • 19 Talontsi FM, Dittrich B, Schüffler A, Sun H, Laatsch H. Epicoccolides: antimicrobial and antifungal polyketides from an endophytic fungus Epicoccum sp. associated with Theobroma cacao . Eur J Org Chem 2013; 2013: 3174-3180
  • 20 Seto H, Tanabe M. Utilization of 13C-13C coupling in structural and biosynthetic studies. III. Ochrephilone – a new fungal metabolite. Tetrahedron Lett 1974; 15: 651-654
  • 21 Ogihara J, Kato J, Oishi K, Fujimoto Y. Biosynthesis of PP-V, a monascorubramine homologue, by Penicillium sp. AZ. J Biosci Bioeng 2000; 90: 678-680
  • 22 Kurono M, Nakanishi K, Shindo K, Tada M. Biosyntheses of monascorubrin and monascoflavin. Chem Pharm Bull (Tokyo) 1963; 11: 359-362
  • 23 Tam WT. Characterization of polyketide synthases in Penicillium marneffei [Phd thesis]. University of Hong Kong; 2012 Available at http://hdl.handle.net/10722/197137 Accessed June 2, 2016
  • 24 Balakrishnan B, Kim HJ, Suh JW, Chen CC, Liu KH, Park SH, Kwon HJ. Monascus azaphilone pigment biosynthesis employs a dedicated fatty acid synthase for short chain fatty acyl moieties. J Korean Soc Appl Biol Chem 2014; 57: 191-196
  • 25 Bijinu B, Suh JW, Park SH, Kwon HJ. Delineating Monascus azaphilone pigment biosynthesis: oxidoreductive modifications determine the ring cyclization pattern in azaphilone biosynthesis. RSC Adv 2014; 4: 59405-59408
  • 26 Yang Y, Liu B, Du X, Li P, Liang B, Cheng X, Du L, Huang D, Wang L, Wang S. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci Rep 2015; 5: 8331
  • 27 Woo PCY, Lam CW, Tam EW, Lee KC, Yung KK, Leung CK, Sze KH, Lau SK, Yuen KY. The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in Penicillium marneffei . Sci Rep 2014; 4: 6728
  • 28 Brown DW, Adams TH, Keller NP. Aspergillus has distinct fatty acid synthases for primary and secondary metabolism. Proc Natl Acad Sci 1996; 93: 14873-14877
  • 29 Crawford JM, Korman TP, Labonte JW, Vagstad AL, Hill EA, Kamari-Bidkorpeh O, Tsai SC, Townsend CA. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Nature 2009; 461: 1139-1143
  • 30 Jahns P, Latowski D, Strzalka K. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim Biophys Acta 2009; 1787: 3-14
  • 31 Britton G. Structure and properties of carotenoids in relation to function. FASEB J 1995; 9: 1551-1558
  • 32 Cobas C, Seoane F, Vaz E, Bernstein MA, Dominguez S, Pérez M, Sýkora S. Automatic assignment of 1H-NMR spectra of small molecules: A new robust and fast expert system based on fuzzy logic and probabilistic methods. Magn Reson Chem 2013; 51: 649-654
  • 33 Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010; 11: 1
  • 34 White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl 1990; 18: 315-322
  • 35 Mehnaz S, Saleem RSZ, Yameen B, Pianet I, Schnakenburg G, Pietraszkiewicz H, Valeriote F, Josten M, Sahl HG, Franzblau SG, Gross H. Lahorenoic acids A–C, ortho-dialkyl-substituted aromatic acids from the biocontrol strain Pseudomonas aurantiaca PB-St2. J Nat Prod 2013; 76: 135-141
  • 36 Frizler M, Lohr F, Lülsdorff M, Gütschow M. Facing the gem-dialkyl effect in enzymeinhibitor design: preparation of homocycloleucine-based azadipeptide nitriles. Chemistry 2011; 17: 11419-11423
  • 37 Gütschow M, Pietsch M, Themann A, Fahrig J, Schulze B. 2,4,5-Triphenylisothiazol-3(2-H)-one 1,1-dioxides as inhibitors of human leukocyte elastase. J Enzyme Inhib Med Chem 2005; 20: 341-347
  • 38 Sisay MT, Steinmetzer T, Stirnberg M, Maurer E, Hammami M, Bajorath J, Gütschow M. Identification of the first low-molecular-weight inhibitors of matriptase-2. J Med Chem 2010; 53: 5523-5535
  • 39 Sisay MT, Hautmann S, Mehner C, König GM, Bajorath J, Gütschow M. Inhibition of human leukocyte elastase by brunsvicamides A–C: cyanobacterial cyclic peptides. ChemMedChem 2009; 4: 1425-1429
  • 40 Musso L, Dallavalle S, Merlini L, Bava A, Nasini G, Penco S, Giannini G, Giommarelli C, De Cesare A, Zuco V, Vesci L, Pisano C, Dal Piaz F, De Tommasi N, Zunino F. Natural and semisynthetic azaphilones as a new scaffold for Hsp90 inhibitors. Bioorg Med Chem 2010; 18: 6031-6043
  • 41 Balakrishnan B, Chandran R, Park SH, Kwon HJ. Delineating citrinin biosynthesis: Ctn-ORF3 dioxygenase-mediated multi-step methyl oxidation precedes a reduction-mediated pyran ring cyclization. Bioorg Med Chem Lett 2016; 26: 392-396