Synlett 2023; 34(12): 1395-1398
DOI: 10.1055/s-0042-1751414
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Ligand-Promoted Rosenmund–von Braun Reaction

Quan Zhang
a   Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. of China
,
Dawei Ma
b   State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China
a   Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. of China
› Author Affiliations
Financial support for this research from the Chinese Academy of Sciences (supported by the Strategic Priority Research Program, grant XDB20020200 & QYZDJ-SSW-SLH029) and the National Natural Science Foundation of China (Grant 21621002, 21831009 and 21991110) is acknowledged.


Abstract

Two picolinamide ligands were found to have significant accelerating effect to classical Rosenmund–von Braun reaction, making the coupling of (hetero)aryl bromides with CuCN occur at 100–120 °C with good to excellent yields in most cases. A large number of functional groups and heterocycles were tolerated under these conditions, thereby providing a convenient and reliable approach for diverse synthesis of aryl nitriles.

Supporting Information



Publication History

Received: 29 April 2022

Accepted after revision: 17 January 2023

Article published online:
09 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 1b Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 1c Kalaria PN, Karad SC, Raval DK. Eur. J. Med. Chem. 2018; 158: 917
    • 1d Kerru N, Singh P, Koorbanally N, Kumar V. Eur. J. Med. Chem. 2017; 142: 179
    • 1e Eftekhari-Sis B, Zirak M, Akbari A. Chem. Rev. 2013; 113: 2958
    • 1f Reddy RS, Lagishetti C, Kiran C, You H, He Y. Org. Lett. 2016; 18: 3818
    • 1g Lagishetti C, Banne S, You H, Tang M, Guo J, Qi N, He Y. Org. Lett. 2019; 21: 5301
    • 1h Reddy RS, Zheng S, Lagishetti C, You H, He Y. RSC Adv. 2016; 6: 68199
    • 1i You H, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119

      For selected references, see:
    • 2a Schareina T, Zapf A, Beller M. Chem. Commun. 2004; 1388
    • 2b Yeung PY, So CM, Lau CP, Kwong FY. Org. Lett. 2011; 13: 648
    • 2c Senecal TD, Shu W, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 10035
    • 2d Cohen DT, Buchwald SL. Org. Lett. 2015; 17: 202
  • 3 Zhang X, Xia A, Chen H, Liu Y. Org. Lett. 2017; 19: 2118

    • For selected references, see:
    • 4a Zanon J, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 2890
    • 4b Schareina T, Zapf A, Beller M. Tetrahedron Lett. 2005; 46: 2585
    • 4c Schareina T, Zapf A, Mägerlein W, Müller N, Beller M. Chem. Eur. J. 2007; 13: 6249
    • 5a Rosenmund KW, Struck E. Ber. Dtsch. Chem. Ges. B 1919; 52: 1749
    • 5b von Braun J, Manz G. Justus Liebigs Ann. Chem. 1931; 488: 111
    • 6a Mowry DT. Chem. Rev. 1948; 42: 189
    • 6b Friedman L, Shechter H. J. Org. Chem. 1961; 26: 2522
    • 6c Lindley J. Tetrahedron 1984; 40: 1433
  • 7 Wang D, Kuang L, Li Z, Ding K. Synlett 2008; 69
  • 8 Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
    • 9a Zhou W, Fan M, Yin J, Jiang Y, Ma D. J. Am. Chem. Soc. 2015; 137: 11942
    • 9b Fan M, Zhou W, Jiang Y, Ma D. Org. Lett. 2015; 17: 5934
    • 9c De S, Yin J, Ma D. Org. Lett. 2017; 19: 4864
    • 9d Gao J, Bhunia S, Wang K, Gan L, Xia S, Ma D. Org. Lett. 2017; 19: 2809
    • 9e Bhunia S, Kumar V, Ma D. J. Org. Chem. 2017; 82: 12603
    • 9f Pawar G, Wu H, De S, Ma D. Adv. Synth. Catal. 2017; 359: 1631
    • 9g Chen Z, Ma D. Org. Lett. 2019; 21: 6874
    • 9h Bhunia S, De S, Ma D. Org. Lett. 2022; 24: 1253
    • 9i Li Q, Xu L, Ma D. Angew. Chem. Int. Ed. 2022; 62: e202210483
    • 10a Fan M, Zhou W, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2016; 55: 6211
    • 10b Xia S, Gan L, Wang K, Li Z, Ma D. J. Am. Chem. Soc. 2016; 138: 13493
    • 10c Chen Z, Jiang Y, Zhang L, Guo Y, Ma D. J. Am. Chem. Soc. 2019; 141: 3541
    • 11a Ma D, Niu S, Zhao J, Jiang X, Jiang Y, Zhang X, Sun T. Chin. J. Chem. 2017; 35: 1661
    • 11b Zhao J, Niu S, Jiang X, Jiang Y, Zhang X, Sun T, Ma D. J. Org. Chem. 2018; 83: 6589
  • 12 Chen Y, Xu L, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2021; 60: 7082
  • 13 Klinkenberg JL, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 5758
  • 14 Ueda Y, Tsujimoto N, Yurino T, Tsurugi H, Mashima K. Chem. Sci. 2019; 10: 994