Synthesis 2023; 55(22): 3862-3874
DOI: 10.1055/s-0042-1751464
paper

Exploiting 1,1-Dibromoalkenes as Direct Precursors to 5-Substituted 1,2,3-Triazoles

Matthew B. Williams
,
Matthew L. Martin
,
Steffen Wiedmann
,
Alistair Boyer
Alistair Boyer was a Royal Society /TATA University Research Fellow. Matthew B. Williams was funded by a Royal Society PhD studentship. Steffen Wiedmann was a Deutscher Akademischer Austauschdienst (DAAD) RISE exchange student.


Abstract

1,1-Dibromoalkenes can be used as direct precursors to three classes of 5-substituted 1,2,3-triazoles. Three different approaches to 1,2,3-triazole products were developed, linked to the N1-substituent. Treatment of 1,1-dibromoalkenes with n-butyllithium and reaction with a sulfonyl azide gave 5-substituted 1-sulfonyl-1,2,3-triazoles. The use of lithium base followed by transmetalation to zinc and reaction with aryl azides allowed access to 1-aryl-1,2,3-triazoles. Finally, the use of EtMgBr as base and reaction with an alkyl azide formed 1-alkyl-1,2,3-triazoles.

Supporting Information



Publication History

Received: 29 March 2023

Accepted after revision: 26 May 2023

Article published online:
27 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kolb HC, Sharpless KB. Drug Discovery Today 2003; 8: 1128
    • 1b Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
    • 1c Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
    • 1d El-Sagheer AH, Sanzone AP, Gao R, Tavassoli A, Brown T. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 11338
    • 1e Gopalan B, Balasubramanian KK. In Click Reactions in Organic Synthesis . Chandrasekaran S. Wiley-VCH; Weinheim: 2016: 25-76
    • 1f Huo J, Hu H, Zhang M, Hu X, Chen M, Chen D, Liu J, Xiao G, Wang Y, Wen Z. RSC Adv. 2017; 7: 2281
    • 2a Massarotti A, Aprile S, Mercalli V, Del Grosso E, Grosa G, Sorba G, Tron GC. ChemMedChem 2014; 9: 2497
    • 2b Zhang J, Kemmink J, Rijkers DT. S, Liskamp RM. J. Chem. Commun. 2013; 49: 4498
    • 2c Odlo K, Hentzen J, dit Chabert JF, Ducki S, Gani OA. B. S. M, Sylte I, Skrede M, Flørenes VA, Hansen TV. Bioorg. Med. Chem. 2008; 16: 4829
    • 2d Tam A, Arnold U, Soellner MB, Raines RT. J. Am. Chem. Soc. 2007; 129: 12670
    • 3a Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
    • 3b Miura T, Yamauchi M, Murakami M. Chem. Commun. 2009; 1470
    • 3c Chattopadhyay B, Gevorgyan V. Angew. Chem. Int. Ed. 2012; 51: 862
    • 4a Bakulev V, Dehaen W, Beryozkina T. In Chemistry of 1,2,3-Triazoles . Dehaen W, Bakulev VA. Springer; Cham: 2015: 1-49
    • 4b Davies HM. L, Alford JS. Chem. Soc. Rev. 2014; 43: 5151
    • 4c Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
    • 5a Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 5b Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 5c Raushel J, Fokin VV. Org. Lett. 2010; 12: 4952
    • 5d Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
    • 5e Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 5f Liang L, Astruc D. Coord. Chem. Rev. 2011; 255: 2933
    • 5g Rodionov VO, Fokin VV, Finn MG. Angew. Chem. Int. Ed. 2005; 44: 2210
  • 6 Wang X, Kuang C, Yang Q. Eur. J. Org. Chem. 2012; 424
  • 7 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 8a Yoo EJ, Ahlquist M, Kim SH, Bae I, Fokin VV, Sharpless KB, Chang S. Angew. Chem. Int. Ed. 2007; 46: 1730
    • 8b Wang X, Kuang C, Yang Q. Eur. J. Org. Chem. 2012; 424
    • 8c Zhao M, Kuang C, Yang Q, Cheng X. Tetrahedron Lett. 2011; 52: 992
    • 8d Luvino D, Amalric C, Smietana M, Vasseur J.-J. Synlett 2007; 3037
    • 9a Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Chem. Rev. 2016; 116: 14726
    • 9b Zhang L, Chen X, Xue P, Sun HH. Y, Williams ID, Sharpless KB, Fokin VV, Jia G. J. Am. Chem. Soc. 2005; 127: 15998
    • 9c Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV. J. Am. Chem. Soc. 2008; 130: 8923
    • 9d Rasmussen LK, Boren BC, Fokin VV. Org. Lett. 2007; 9: 5337
  • 10 Yamauchi M, Miura T, Murakami M. Heterocycles 2010; 80: 177
  • 11 For an approach to swapping from 4- to 5-substitution, see: Stephenson G, Bulman Page P, Harvey J, Slawin A. Synlett 2016; 27: 2500
  • 12 Boyer J, Mack C, Goebel N, Morgan JL. J. Org. Chem. 1958; 23: 1051
    • 13a Harvey GR. J. Org. Chem. 1966; 31: 1587
    • 13b Ramachary DB, Ramakumar K, Narayana VV. Chem. Eur. J. 2008; 14: 9143
    • 13c Grimster N, Zhang L, Fokin VV. J. Am. Chem. Soc. 2010; 132: 2510
    • 14a Meza-Aviña ME, Patel MK, Lee CB, Dietz TJ, Croatt MP. Org. Lett. 2011; 13: 2984
    • 14b Meza-Aviña ME, Patel MK, Croatt MP. Tetrahedron 2013; 69: 7840
    • 14c Hyatt IF. D, Meza-Aviña ME, Croatt MP. Synlett 2012; 23: 2869
    • 15a Akimova GS, Chistokletov VN, Petrov AA. Zh. Org. Khim. 1965; 1: 2077
    • 15b Akimova GS, Chistokletov VN, Petrov AA. Zh. Org. Khim. 1967; 3: 968
  • 16 Krasiński A, Fokin VV, Sharpless KB. Org. Lett. 2004; 6: 1237
  • 17 Akao A, Tsuritani T, Kii S, Sato K, Nonoyama N, Mase T, Yasuda N. Synlett 2007; 31
  • 18 Smith CD, Greaney MF. Org. Lett. 2013; 15: 4826
    • 19a For a lanthanum acetylide, see: Hong L, Lin W, Zhang F, Liu R, Zhou X. Chem. Commun. 2013; 49: 5589
    • 19b For a transition-metal-free approach, see: Kwok SW, Fotsing JR, Fraser RJ, Rodionov VO, Fokin VV. Org. Lett. 2010; 12: 4217
    • 20a Ohira S. Synth. Commun. 1989; 19: 561
    • 20b Müller S, Liepold B, Roth GJ, Bestmann HJ. Synlett 1996; 521
    • 20c Seyferth D, Marmor RS, Hilbert P. J. Org. Chem. 1971; 36: 1379
    • 20d Gilbert JC, Weerasooriya U. J. Org. Chem. 1982; 47: 1837
    • 21a Desai NB, McKelvie N, Ramirez F. J. Am. Chem. Soc. 1962; 84: 1745
    • 21b Corey EJ, Fuchs PL. Tetrahedron Lett. 1972; 13: 3769
  • 22 Wu L, Chen Y, Luo J, Sun Q, Peng M, Lin Q. Tetrahedron Lett. 2014; 55: 3847
  • 23 Tietze LF, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
  • 25 Creary X, Anderson A, Brophy C, Crowell F, Funk Z. J. Org. Chem. 2012; 77: 8756
  • 26 Valentin V. Chem. Ber. 1895; 28: 2661
  • 27 For an example using this method from a hemiacetal to a 1,1-dibromoalkene to a 1-ST, see: Romiti F, Decultot L, Clark JS. J. Org. Chem. 2022; 87: 8126
    • 28a Lamberti M, Fortman GC, Poater A, Broggi J, Slawin AM. Z, Cavallo L, Nolan SP. Organometallics 2012; 31: 756
    • 28b Gangaprasad D, Paul Raj J, Kiranmye T, Sasikala R, Karthikeyan K, Kutti Rani S, Elangovan J. Tetrahedron Lett. 2016; 57: 3105
    • 28c Johansson JR, Lincoln P, Nordén B, Kann N. J. Org. Chem. 2011; 76: 2355
    • 28d Yu X, Huang Z, Liu W, Shi S, Kuang C. Org. Biomol. Chem. 2015; 13: 4459
  • 29 Dommerholt J, van Rooijen O, Borrmann A, Guerra CF, Bickelhaupt FM, van Delft FL. Nat. Commun. 2014; 5: 5378
    • 30a Paegle E, Belyakov S, Kirsch G, Arsenyan P. Tetrahedron Lett. 2015; 56: 4554
    • 30b Rao ML. N, Jadhav DN, Dasgupta P. Org. Lett. 2010; 12: 2048
  • 31 Curphey TJ. Org. Prep. Proced. Int. 2009; 13: 112
    • 32a Yamamoto T, Ishibashi A, Suginome M. Chem. Lett. 2017; 46: 1169
    • 32b Morri AK, Thummala Y, Doddi VR. Org. Lett. 2015; 17: 4640
  • 33 Padwa A, Wong GS. K. J. Org. Chem. 2002; 51: 3125
  • 34 Aikawa K, Hioki Y. t. Shimizu N., Mikami K. 2011; 133: 20092
  • 35 Beny JP, Dhawan SN, Kagan J, Sundlass S. J. Org. Chem. 2002; 47: 2201
  • 36 Michaelides IN, Darses B, Dixon DJ. Org. Lett. 2011; 13: 664
  • 37 Zhang Y, Zhu B, Zheng Y, Huang S. J. Organomet. Chem. 2022; 965–966: 122321
  • 38 Betson MS, Fleming I. Org. Biomol. Chem. 2003; 1: 4005
    • 39a Biswas S, Van Steijvoort BF, Waeterschoot M, Bheemireddy NR, Evano G, Maes BU. W. Angew. Chem. Int. Ed. 2021; 60: 21988
    • 39b Liang MZ, Meek SJ. Angew. Chem. Int. Ed. 2019; 58: 14234
  • 40 Newcomb ET, Knutson PC, Pedersen BA, Ferreira EM. J. Am. Chem. Soc. 2015; 138: 108
    • 41a Nicolaou KC, Shah AA, Korman H, Khan T, Shi L, Worawalai W, Theodorakis EA. Angew. Chem. Int. Ed. 2015; 54: 9203
    • 41b Bonazzi S, Eidam O, Güttinger S, Wach J.-Y, Zemp I, Kutay U, Gademann K. J. Am. Chem. Soc. 2010; 132: 1432
    • 42a López S, Fernández-Trillo F, Castedo L, Saá C. Org. Lett. 2003; 5: 3725
    • 42b López S, Fernández-Trillo F, Midón P, Castedo L, Saá C. J. Org. Chem. 2005; 70: 6346
  • 43 Stone MJ, Van Dyk MS, Booth PM, Williams DH. J. Chem. Soc., Perkin Trans. 1 1991; 1629
  • 44 Altimari JM, Niranjan B, Risbridger GP, Schweiker SS, Lohning AE, Henderson LC. Bioorg. Med. Chem. 2014; 22: 2692
  • 45 Hockey SC, Barbante GJ, Francis PS, Altimari JM, Yoganantharajah P, Gibert Y, Henderson LC. Eur. J. Med. Chem. 2016; 109: 305
  • 46 Campbell-Verduyn L, Elsinga PH, Mirfeizi L, Dierckx RA, Feringa BL. Org. Biomol. Chem. 2008; 6: 3461
  • 47 Campbell-Verduyn LS, Mirfeizi L, Dierckx RA, Elsinga PH, Feringa BL. Chem. Commun. 2009; 2139
    • 48a Tokimizu Y, Wieteck M, Rudolph M, Oishi S, Fujii N, Hashmi AS. K, Ohno H. Org. Lett. 2015; 17: 604
    • 48b Yu W, Chen L, Tao J, Wang T, Fu J. Chem. Commun. 2019; 55: 5918