Subscribe to RSS
DOI: 10.1055/s-0042-1751486
Anthracene-Functionalized Metallacage with Fluorescence Response Behavior to Anions
This work was supported by the National Nature Science Foundation of China (No. 22103062), Shanghai Pujiang Program (No. 22PJ1402800), the Fundamental Research Funds for the Central Universities (2022QKT003), and the Open Research Fund of Shanghai Key Laboratory of Green Chemistry and Chemical Processes.
Abstract
Functionalized metallacages have attracted tremendous attention in recent years due to their potential applications in optical sensing, catalysis, and recognition. A novel anthracene-functionalized metallacage was synthesized and characterized in detail by UV/vis spectroscopy, 1D/2D NMR, electrospray ionization time-of-flight mass spectrometry, and X-ray single crystal diffraction. This metallacage exhibited a specific fluorescence enhancement response to OH–, PO4 3–, and AcO– anions, and further analysis indicated that this was due to anion-induced metallacage disassembly.
Key words
supramolecular chemistry - self-assembly - metallacages - fluorescence - anion recognitionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751486.
- Supporting Information
Publication History
Received: 09 May 2023
Accepted after revision: 24 July 2023
Article published online:
07 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Stricklen PM, Volcko EJ, Verkade JG. J. Am. Chem. Soc. 1983; 105: 2494
- 2 Fujita D, Ueda Y, Sato S, Mizuno N, Kumasaka T, Fujita M. Nature 2016; 540: 563
- 3 Fujita D, Ueda Y, Sato S, Yokoyama H, Mizuno N, Kumasaka T, Fujita M. Chem 2016; 1: 91
- 4 Howlader P, Mondal B, Purba PC, Zangrando E, Mukherjee PS. J. Am. Chem. Soc. 2018; 140: 7952
- 5 Yoshizawa M, Catti L. Acc. Chem. Res. 2019; 52: 2392
- 6 Wu K, Tessarolo J, Baksi A, Clever GH. Angew. Chem. Int. Ed. 2022; 61: e202205725
- 7 Sun Y, Chen C, Liu J, Stang PJ. Chem. Soc. Rev. 2020; 49: 3889
- 8 Hong CM, Bergman RG, Raymond KN, Toste FD. Acc. Chem. Res. 2018; 51: 2447
- 9 Rizzuto FJ, Carpenter JP, Nitschke JR. J. Am. Chem. Soc. 2019; 141: 9087
- 10 Rizzuto FJ, Nitschke JR. J. Am. Chem. Soc. 2020; 142: 7749
- 11 Jiao J, Tan C, Li Z, Liu Y, Han X, Cui Y. J. Am. Chem. Soc. 2018; 140: 2251
- 12 Li K, Zhang L.-Y, Yan C, Wei S.-C, Pan M, Zhang L, Su C.-Y. J. Am. Chem. Soc. 2014; 136: 4456
- 13 Liu D, Li K, Chen M, Zhang T, Li Z, Yin J.-F, He L, Wang J, Yin P, Chan Y.-T, Wang P. J. Am. Chem. Soc. 2021; 143: 2537
- 14 Lu S, Morrow DJ, Li Z, Guo C, Yu X, Wang H, Schultz JD, O’Connor JP, Jin N, Fang F, Wang W, Cui R, Chen O, Su C, Wasielewski MR, Ma X, Li X. J. Am. Chem. Soc. 2023; 145: 5191
- 15 Tromans RA, Carter TS, Chabanne L, Crump MP, Li H, Matlock JV, Orchard MG, Davis AP. Nat. Chem. 2019; 11: 52
- 16 Zhang L, Liu H, Yuan G, Han Y.-F. Chin. J. Chem. 2021; 39: 2273
- 17 Wu G, Chen Y, Fang S, Tong L, Shen L, Ge C, Pan Y, Shi X, Li H. Angew. Chem. Int. Ed. 2021; 60: 16594
- 18 Leenders SH. A. M, Gramage-Doria R, de Bruin B, Reek JN. H. Chem. Soc. Rev. 2015; 44: 433
- 19 Mei F, Lin H, Hu L, Dou W.-T, Yang H.-B, Xu L. Smart Molecules 2023; 1: e20220001
- 20 Kang J, Chen L, Cui H, Zhang L, Su C.-Y. Chin. J. Chem. 2017; 35: 964
- 21 Chu D, Gong W, Jiang H, Tang X, Cui Y, Liu Y. CCS Chem. 2022; 4: 1180
- 22 Zhang D, Ronson TK, Lavendomme R, Nitschke JR. J. Am. Chem. Soc. 2019; 141: 18949
- 23 Zhang M, Yu H, Zou Q, Li Z.-A, Lai Y, Cai L, Yin P. CCS Chem. 2022; 4: 3563
- 24 Zhu W, Guo J, Ju Y, Serda RE, Croissant JG, Shang J, Coker E, Agola JO, Zhong Q.-Z, Ping Y, Caruso F, Brinker CJ. Adv. Mater. (Weinheim, Ger.) 2019; 31: 1806774
- 25 Mu C, Zhang Z, Hou Y, Liu H, Ma L, Li X, Ling S, He G, Zhang M. Angew. Chem. Int. Ed. 2021; 60: 12293
- 26 Huang B, Liu X, Yang G, Tian J, Liu Z, Zhu Y, Li X, Yin G, Zheng W, Xu L, Zhang W. CCS Chem. 2022; 4: 2090
- 27 Li C, Nian H, Dong Y, Li Y, Zhang B, Cao L. Inorg. Chem. 2020; 59: 5713
- 28 Guo J, Xu Y.-W, Li K, Xiao L.-M, Chen S, Wu K, Chen X.-D, Fan Y.-Z, Liu J.-M, Su C.-Y. Angew. Chem. Int. Ed. 2017; 56: 3852
- 29 Li Y, Dong J, Gong W, Tang X, Liu Y, Cui Y, Liu Y. J. Am. Chem. Soc. 2021; 143: 20939
- 30 Luo D, Yuan Z.-J, Ping L.-J, Zhu X.-W, Zheng J, Zhou C.-W, Zhou X.-C, Zhou X.-P, Li D. Angew. Chem. Int. Ed. 2023; e202216977
- 31 Yan X, Wei P, Liu Y, Wang M, Chen C, Zhao J, Li G, Saha M.-L, Zhou Z, An Z, Li X, Stang PJ. J. Am. Chem. Soc. 2019; 141: 9673
- 32 Synthesis details of Cage 1: Ligand 1 (100 mg, 0.17 mmol, 1 equiv) and Pd(NO3)2 (20 mg, 0.86 mmol, 0.2 equiv), were added to DMSO (10 mL). The mixture was stirred for 6 h at 80 °C, then cooled to r.t. The product was precipitated with THF and collected by centrifugation to give a yellow solid; yield: 110 mg (92%). 1H NMR (501 MHz, DMSO-d 6): δ = 10.03 (s, 2 H), 9.49 (d, J = 5.7 Hz, 2 H), 8.67 (s, 1 H), 8.36 (d, J = 8.1 Hz, 2 H), 8.15 (d, J = 8.5 Hz, 2 H), 7.94–7.80 (m, 6 H), 7.66 (d, J = 9.4 Hz, 2 H), 7.56–7.50 (m, 6 H), 7.49–7.44 (m, 4 H), 7.42 (d, J = 8.5 Hz, 2 H). 13C NMR (126 MHz, DMSO-d 6): δ = 148.92, 148.17, 145.70, 139.47, 136.08, 135.45, 133.20, 131.38, 130.00, 129.22, 128.96, 127.86, 127.26, 126.43, 125.84. Detailed synthesis steps can be found in the SI, Section B.
- 33 CCDC 2252401 contains the supplementary crystallographic data for cage 1. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 34 Zhang T, Zhang G.-L, Yan Q.-Q, Zhou L.-P, Cai L.-X, Guo X.-Q, Sun Q.-F. Inorg. Chem. 2018; 57: 3596
- 35 Li C, Zhang B, Dong Y, Li Y, Wang P, Yu Y, Cheng L, Cao L. Dalton Trans. 2020; 49: 8051