Subscribe to RSS
DOI: 10.1055/s-0042-1751506
Recent Advances in Transition-Metal-Catalyzed Sonogashira Cross-Coupling Reactions of Alkyl Electrophiles
This work is supported by National Institute of Health (R35GM146765) and the Herman Frasch Foundation for Chemical Research (926-HF22). W.L. thanks the University of Cincinnati for the financial support
Abstract
Catalytic Sonogashira cross-coupling reactions represent an efficient and versatile approach for constructing complex alkynes from readily available starting materials. Despite notable progress in this field, the development of transition-metal-catalyzed Sonogashira cross-coupling reactions of alkyl electrophiles remains limited. This limitation primarily stems from the low reactivity and pronounced propensity of these compounds towards β-H elimination. To overcome these challenges, researchers have investigated the use of palladium, nickel, and copper catalysts for Sonogashira reactions of alkyl electrophiles. Furthermore, significant strides have been made in achieving asymmetric Sonogashira cross-coupling reactions of electrophiles. This short review provides an overview of recent breakthroughs in this area.
1 Introduction
2 Palladium-Catalyzed Sonogashira Cross-Coupling of Alkyl Halides
3 Nickel-Catalyzed Sonogashira Cross-Coupling of Alkyl Halides
4 Copper-Catalyzed Sonogashira Cross-Coupling of Alkyl Electrophiles
4.1 Copper-Catalyzed Racemic Sonogashira Cross-Coupling of Alkyl Electrophiles
4.2 Copper-catalyzed Asymmetric Sonogashira Cross-Coupling of Alkyl Electrophiles
5 Conclusions and Perspectives
Publication History
Received: 08 August 2023
Accepted after revision: 06 September 2023
Article published online:
02 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 3a Negishi E.-i, Anastasia L. Chem. Rev. 2003; 103: 1979
- 3b Sonogashira K. J. Organometal. Chem. 2002; 653: 46
- 3c Plenio H. Angew. Chem. Int. Ed. 2008; 47: 6954
- 4a Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
- 4b Chinchilla R, Nájera C. Chem. Soc. Rev. 2011; 40: 5084
- 5a Chen M, Zheng X, Li W, He J, Lei A. J. Am. Chem. Soc. 2010; 132: 4101
- 5b Cahiez G, Gager O, Buendia J. Angew. Chem. Int. Ed. 2010; 49: 1278
- 5c Thaler T, Guo LN, Mayer P, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 2174
- 5d He J, Wasa M, Chan KS. L, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 3387
- 5e Nakane T, Tanioka Y, Tsukada N. Organometallics 2015; 34: 1191
- 5f Jin L, Hao W, Xu J, Sun N, Hu B, Shen Z, Mo W, Hu X. Chem. Commun. 2017; 53: 4124
- 5g Smith JM, Qin T, Merchant RR, Edwards JT, Malins LR, Liu Z, Che G, Shen Z, Shaw SA, Eastgate MD, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 11906
- 5h Zhang H, Zhang P, Jiang M, Yang H, Fu H. Org. Lett. 2017; 19: 1016
- 5i Huang L, Olivares AM, Weix DJ. Angew. Chem. Int. Ed. 2017; 56: 11901
- 5j Zhang H, Sun N, Hu B, Shen Z, Hu X, Jin L. Org. Chem. Front. 2019; 6: 1983
- 6 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467
- 7 Eckhardt M, Fu GC. J. Am. Chem. Soc. 2003; 125: 13642
- 8 Altenhoff G, Würtz S, Glorius F. Tetrahedron Lett. 2006; 47: 2925
- 9a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
- 9b Ananikov VP. ACS Catal. 2015; 5: 1964
- 9c Dander JE, Garg NK. ACS Catal. 2017; 7: 1413
- 9d Choi J, Fu GC. Science 2017; 356: eaaf7230
- 10 Diccianni J, Lin Q, Diao T. Acc. Chem. Res. 2020; 53: 906
- 11 Vechorkin O, Barmaz D, Proust V, Hu X. J. Am. Chem. Soc. 2009; 131: 12078
- 12 Yi J, Lu X, Sun Y.-Y, Xiao B, Liu L. Angew. Chem. Int. Ed. 2013; 52: 12409
- 13 Pérez García PM, Ren P, Scopelliti R, Hu X. ACS Catal. 2015; 5: 1164
- 14 Wang Z, Zheng T, Sun H, Li X, Fuhr O, Fenske D. New J. Chem. 2018; 42: 11465
- 15 Fan Q, Sun H, Xie S, Dong Y, Li X, Fuhr O, Fenske D. Organometallics 2021; 40: 2240
- 16 Zhang X, Qi D, Jiao C, Liu X, Zhang G. Nat. Commun. 2021; 12: 4904
- 17 Luo F.-X, Xu X, Wang D, Cao Z.-C, Zhang Y.-F, Shi Z.-J. Org. Lett. 2016; 18: 2040
- 18 Yamane Y, Miwa N, Nishikata T. ACS Catal. 2017; 7: 6872
- 19 Hazra A, Lee MT, Chiu JF, Lalic G. Angew. Chem. Int. Ed. 2018; 57: 5492
- 20 Cao Y.-X, Dong X.-Y, Yang J, Jiang S.-P, Zhou S, Li Z.-L, Chen G.-Q, Liu X.-Y. Adv. Synth. Catal. 2020; 362: 2280
- 21 Li X, Jiang M, Zuo J, Song X, Lv J, Yang D. Sci. China Chem. 2022; 66: 791
- 22 Zeng X, Wang C, Yan W, Rong J, Song Y, Xiao Z, Cai A, Liang SH, Liu W. ACS Catal. 2023; 13: 2761
- 23 Li B, Shi JL, Xia Y. Org. Lett. 2023; 25: 2674
- 24 Hu D.-D, Li C, Gao Q, Nie T.-M, Zhang K.-F, Wu B.-B, Li Y, Wang X.-S. Org. Lett. 2023; 25: 4514
- 25 Jain S, Anmol, Sharma R, Karmakar T, Yadav MR. Org. Lett. 2023; 25: 5437
- 26a Dabrowski JA, Gao F, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 4778
- 26b Makida Y, Takayama Y, Ohmiya H, Sawamura M. Angew. Chem. Int. Ed. 2013; 52: 5350
- 26c Hamilton JY, Sarlah D, Carreira EM. Angew. Chem. Int. Ed. 2013; 52: 7532
- 26d Harada A, Makida Y, Sato T, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2014; 136: 13932
- 26e Cui XY, Ge Y, Tan SM, Jiang H, Tan D, Lu Y, Lee R, Tan CH. J. Am. Chem. Soc. 2018; 140: 8448
- 27 Dong X.-Y, Zhang Y.-F, Ma C.-L, Gu Q.-S, Wang F.-L, Li Z.-L, Jiang S.-P, Liu X.-Y. Nat. Chem. 2019; 11: 1158
- 28 Mo X, Chen B, Zhang G. Angew. Chem. Int. Ed. 2020; 59: 13998
- 29 Zuo H.-D, Zhu S.-S, Hao W.-J, Wang S.-C, Tu S.-J, Jiang B. ACS Catal. 2021; 11: 6010
- 30 Guo R, Sang J, Xiao H, Li J, Zhang G. Chin. J. Chem. 2022; 40: 1337
- 31 Wang F.-L, Yang C.-J, Liu J.-R, Yang N.-Y, Dong X.-Y, Jiang R.-Q, Chang X.-Y, Li Z.-L, Xu G.-X, Yuan D.-L, Zhang Y.-S, Gu Q.-S, Hong X, Liu X.-Y. Nat. Chem. 2022; 14: 949
- 32 Akagawa H, Tsuchiya N, Morinaga A, Katayama Y, Sumimoto M, Nishikata T. ACS Catal. 2022; 12: 9831
- 33 Mo X, Huang H, Zhang G. ACS Catal. 2022; 12: 9944
- 34 Li J, Ning L, Tan Q, Feng X, Liu X. Org. Chem. Front. 2022; 9: 6312