Subscribe to RSS
DOI: 10.1055/s-0042-1751545
Recent Advances in Quinoline-Based Macrocycles: Synthesis, Properties, and Applications in Catalytic Reactions
This work was financially supported by JSPS KAKENHI Grant Number JP19K22192 (Grant-in-Aid for Exploratory Research, to N.K.), JP20H02746 (Grant-in-Aid for Scientific Research (B), to N.K.), and 22K14670 (Grant-in-Aid for Early Career Scientists, to W.X.). N.K. thanks the Izumi Science and Technology Foundation, Toyo Gosei Memorial Foundation, Sumitomo Foundation, and Mitsubishi Foundation for financial support.
Abstract
Macrocyclic compounds exhibit unique properties due to their large ring-shaped structures, which have captivated chemists in recent decades. These molecules exert specific functions in various applicable fields, such as chemistry, materials science, and biology. Crown ethers, calixarenes, and porphyrinoids, which contain several ether/phenol/pyrrole subunits, represent these molecular categories with unparalleled functional diversity. In contrast, quinoline-based macrocycles comprising the quinoline unit as a key element to construct specific ring shapes have received limited attention. In this minireview, we summarize the recent advances in oligoquinoline macrocycles TriQuinoline (TQ), oxa-TriQuinoline (o-TQ), TEtraQuinoline (TEQ), and other bridged quinoline-based macrocycles. Emphasis is placed on the synthesis, structure, and application of these molecules in organometallic and supramolecular chemistry, which may guide new molecular designs in the quinoline-based macrocycle family.
1 Introduction
2 Quinoline-Based Macrocycles
2.1 TriQuinoline (TQ)
2.2 Oxa-TriQuinoline (o-TQ)
2.3 TEtraQuinoline (TEQ)
2.4 Larger Quinoline-Based Macrocycles with Bridges
3 Conclusion
Key words
quinoline - TriQuinoline - oxa-TriQuinoline - TEtraQuinoline - quinoline-based macrocyclesPublication History
Received: 27 October 2023
Accepted after revision: 11 December 2023
Article published online:
23 January 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Liu ZC, Nalluri SK. M, Stoddart JF. Chem. Soc. Rev. 2017; 46: 2459
- 1b He Q, Vargas-Zúñiga GI, Kim SH, Kim SK, Sessler JL. Chem. Rev. 2019; 119: 9753
- 1c Diederich F, Stang PJ, Tykwinski RR. Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis . Wiley-VCH; Weinheim: 2008
- 1d Gokel GW, Leevy WM, Weber ME. Chem. Rev. 2004; 104: 2723
- 2a Das B, McPherson JN, Colbran SB. Coord. Chem. Rev. 2018; 363: 29
- 2b Grajewski J. Molecules 2022; 27: 1004
- 2c Xu W, Kumagai N. Tetrahedron 2023; 141: 133512
- 2d Alcock NW, Curzon EH, Moore P, Pierpoint C. J. Chem. Soc., Dalton Trans. 1984; 605
- 2e Lukeš I, Kotek J, Vojtíšek P, Hermann P. Coord. Chem. Rev. 2001; 216–217: 287
- 2f Pazderová L, David T, Kotek J, Kubíček V, Hermann P. Polyhedron 2021; 196: 114994
- 3a Senge MO, Sergeeva NN, Hale KJ. Chem. Soc. Rev. 2021; 50: 4730
- 3b Taniguchi M, Lindsey JS. Chem. Rev. 2017; 117: 344
- 4a Barona-Castaño JC, Carmona-Vargas CC, Brocksom TJ, de Oliveira KT. Molecules 2016; 21: 310
- 4b Thuita DW, Bruckner C. Chem. Rev. 2022; 122: 7990
- 4c Szyszko B, Bialek MJ, Pacholska-Dudziak E, Latos-Grażyński L. Chem. Rev. 2017; 117: 2839
- 5a Lemon CM. Pure Appl. Chem. 2020; 92: 1901
- 5b Gross Z, Galili N, Saltsman I. Angew. Chem. Int. Ed. 1999; 38: 1427
- 6a Shimizu S. Chem. Rev. 2017; 117: 2730
- 6b Kobayashi N, Takeuchi Y, Matsuda A. Angew. Chem. Int. Ed. 2007; 46: 758
- 7 Shimizu S. Chem. Rev. 2017; 117: 2730
- 8 Escobar L, Sun Q, Ballester P. Acc. Chem. Res. 2023; 56: 500
- 9a Lash TD. Chem. Rev. 2017; 117: 2313
- 9b Pawlicki M, Latos-Grażyński L. Handbook of Porphyrin Science, Vol. 22. Kadish K, Smith K, Guilard R. World Scientific Publishing; Singapore: 2010: 103
- 10 Berlin K, Breitmaier E. Angew. Chem., Int. Ed. Engl. 1994; 33: 219
- 11 Köhler T, Seidel D, Lynch V, Arp FO, Ou ZP, Kadish KM, Sessler JL. J. Am. Chem. Soc. 2003; 125: 6872
- 12 Matano Y. Chem. Rev. 2017; 117: 3138
- 13a Kral V, Gale PA, Anzenbacher P, Jursikova K, Lynch V, Sessler JL. Chem. Commun. 1998; 9
- 13b Yamamoto T, Kanbara T, Suzuki Y, Yanagi T. Synlett 2005; 263
- 13c Gong HY, Zhang XH, Wang DX, Ma HW, Zheng QY, Wang MX. Chem. Eur. J. 2006; 12: 9262
- 13d Newkome GR, Joo YJ, Theriot KJ, Fronczek FR. J. Am. Chem. Soc. 1986; 108: 6074
- 13e Tseberlidis G, Intrieri D, Caselli A. Eur. J. Inorg. Chem. 2017; 3589
- 13f Panza N, Tseberlidis G, Caselli A, Vicente R. Dalton Trans. 2022; 51: 10635
- 14 Adachi S, Shibasaki M, Kumagai N. Nat. Commun. 2019; 10: 3820
- 15 Karimata T, Adachi S, Shibasaki M, Kumagai N. Chem. Pharm. Bull. 2022; 70: 595
- 16 Kobayashi T, Kumagai N. Angew. Chem. Int. Ed. 2023; 62: e202307896
- 17 Kobayashi T, Sakurai T, Kumagai N. Bull. Chem. Soc. Jpn. 2023; 96: 1139
- 18 Zhang XY, Li LX, Zanoni G, Han XY, Bi XH. Chem. Eur. J. 2022; 28: e202200280
- 19 Xu W, Nagata Y, Kumagai N. J. Am. Chem. Soc. 2023; 145: 2609
- 20a Movassaghi M, Hill MD. J. Am. Chem. Soc. 2006; 128: 14254
- 20b Movassaghi M, Hill MD, Ahmad OK. J. Am. Chem. Soc. 2007; 129: 10096
- 21 Nishiwaki M, Xu W, Kumagai N. Asian J. Org. Chem. 2023; 12: e202300261
- 22 Jiang H, Léger JM, Guionneau P, Huc I. Org. Lett. 2004; 6: 2985
- 23 Urushibara K, Ferrand Y, Liu Z, Masu H, Pophristic V, Tanatani A, Huc I. Angew. Chem. Int. Ed. 2018; 57: 7888
- 24 Urushibara K, Ferrand Y, Liu Z, Katagiri K, Kawahata M, Morvan E, D’Elia R, Pophristic V, Tanatani A, Huc I. Chem. Eur. J. 2021; 27: 11205
- 25 Yang D, Greenfield JL, Ronson TK, von Krbek LK. S, Yu L, Nitschke JR. J. Am. Chem. Soc. 2020; 142: 19856
- 26 Shimasaki T, Kuroda R, Akao M, Akimoto T, Ishikawa T, Iwanaga T, Teramoto N, Shibata M. Chem. Lett. 2019; 48: 133