RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2024; 56(12): 1912-1922
DOI: 10.1055/s-0042-1751563
DOI: 10.1055/s-0042-1751563
paper
Divergent Reactivity of δ-Acetoxy Allenoates with 1,3-Bisnucleophiles: Synthesis of Multisubstituted Pyran, Dihydropyran, and 3-Vinylpent-2-enedioate Scaffolds
K.C.K. thanks SERB for a J. C. Bose fellowship (JBR/2020/000038) for funding. We also thank partial support from IoE (University of Hyderabad).

Abstract
Base-dependent synthesis of tetrasubstituted pyrans or 3,4-dihydropyrans using δ-acetoxy allenoates and enolizable carbonyls like cyclohexan-1,3-dione and ethyl benzoylacetate is reported. Thus, the use of DMAP as an organocatalytic base gives tetrasubstituted pyrans while DBU affords isomeric tetrasubstituted 3,4-dihydropyrans. The reaction of δ-acetoxy allenoates with ethyl benzoylacetate mediated by KO t Bu furnishes diethyl 3-vinylpent-2-enedioates.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751563.
- Supporting Information
Publikationsverlauf
Eingereicht: 14. Dezember 2023
Angenommen nach Revision: 05. Februar 2024
Artikel online veröffentlicht:
20. Februar 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Zhang C, Lu X. J. Org. Chem. 1995; 60: 2906
- 1b Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
- 2a Cowen BJ, Miller SJ. Chem. Soc. Rev. 2009; 38: 3102
- 2b Li E.-Q, Huang Y. Chem. Commun. 2020; 56: 680
- 2c Hajinasiri R. Tetrahedron 2022; 126: 133053
- 2d Song M, Zhao J, Li E.-Q. Chin. Chem. Lett. 2022; 33: 2372
- 3a Evans CA, Miller S. J. Am. Chem. Soc. 2003; 125: 12394
- 3b Kumari AL. S, Kumara Swamy KC. J. Org. Chem. 2015; 80: 4084
- 3c Wahl JM, Conner ML, Brown MK. J. Am. Chem. Soc. 2018; 140: 15943
- 3d Li S, Tang Z, Wang Y, Wang D, Wang Z, Yu C, Li T, Wei D, Yao C. Org. Lett. 2019; 21: 1306
- 3e Maki SL, Maity P, Dougherty S, Johns J, Lepore SD. Org. Lett. 2019; 21: 7952
- 3f Basavaraja D, Ajay Krishna MS, Krishnan J, Athira CS, Amrutha RR, Suresh E, Somappa SB. Chem. Commun. 2021; 57: 1746
- 3g Hu Y, Shi W, Yan Z, Liao J, Liu M, Xu J, Wang W, Wu Y, Zhang C, Guo H. Org. Lett. 2021; 23: 6780
- 4a Zhu X-F, Lan J, Kwon O. J. Am. Chem. Soc. 2003; 125: 4716
- 4b Saunders LB, Miller SJ. ACS Catal. 2011; 1: 1347
- 4c Sankar MG, Garcia-Castro M, Golz C, Strohmann C, Kumar K. Angew. Chem. Int. Ed. 2016; 55: 9709
- 4d Ni H, Yu Z, Yao W, Lan Y, Ullah N, Lu Y. Chem. Sci. 2017; 8: 5699
- 4e Vaishnav NK, Chandrasekharan SP, Zaheer MK, Kant R, Mohanan K. Chem. Commun. 2020; 56: 11054
- 4f Li M, Zhou W. Chem. Commun. 2020; 56: 8842
- 4g Li N, Huang Y. Org. Lett. 2020; 22: 9392
- 4h Feng J, Chen Y, Qin W, Huang Y. Org. Lett. 2020; 22: 433
- 4i Jia S, Ma M, Li E.-Q, Duan Z, Mathey F. Org. Lett. 2021; 23: 3337
- 4j Tang X, Zhang Y, Tang Y, Li Y, Zhou J, Wang D, Gao L, Su Z, Song Z. ACS Catal. 2022; 12: 5185
- 4k Maddigan-Wyatt JT, Cao J, Ametovski J, Hooper JF, Lupton DW. Org. Lett. 2022; 24: 2847
- 5a Li K, Hu J, Liu H, Tong X. Chem. Commun. 2012; 48: 2900
- 5b Lei Y, Xing J-J, Xu Q, Shi M. Eur. J. Org. Chem. 2016; 3486
- 5c Gu Y, Li F, Hu P, Liao D, Tong X. Org. Lett. 2015; 17: 1106
- 5d Ni C, Tong X. J. Am. Chem. Soc. 2016; 138: 7872
- 5e Ni C, Zhou W, Tong X. Tetrahedron 2017; 73: 3347
- 5f Kumar AS, Qureshi AA, Kumara Swamy KC. J. Org. Chem. 2020; 85: 4130
- 5g Zhu Y, Huang Y. Org. Lett. 2020; 22: 6750
- 5h Kumar AS, Chauhan S, Kumara Swamy KC. Org. Lett. 2021; 23: 1123
- 5i Khan SA, Kumar AS, Kumara Swamy KC. J. Org. Chem. 2022; 87: 1285
- 5j Ni C, Zhang Y, Hou Y, Tong X. Chem. Commun. 2017; 53: 2567
- 5k Debnath S, Kumar AS, Chauhan S, Kumara Swamy KC. Adv. Synth. Catal. 2022; 364: 4316
- 5l Shi B, Jin F, Lv Q, Zhou X, Liao Z, Yu C, Zhang K, Yao C. Org. Biomol. Chem. 2023; 21: 5775
- 6a Hu J, Dong W, Wu X.-Y, Tong X. Org. Lett. 2012; 14: 5530
- 6b Xing J, Lei Y, Gao Y.-N, Shi M. Org. Lett. 2017; 19: 2382
- 6c Xu T, Wang D, Liu W, Tong X. Org. Lett. 2019; 21: 1944
- 6d Wu X.-Y, Gao Y.-N, Shi M. Eur. J. Org. Chem. 2019; 1620
- 6e Zhu Y, Wang D, Huang Y. Org. Lett. 2019; 21: 908
- 6f Cao Z.-H, Wang Y.-H, Kalita SJ, Schneider U, Huang Y.-Y. Angew. Chem. Int. Ed. 2020; 59: 1884
- 6g Dai Z, Zhu J, Su W, Zeng W, Liu Z, Chen M, Zhou Q. Org. Lett. 2020; 22: 7008
- 6h Debnath S, Kumar AS, Chauhan S, Kumara Swamy KC. J. Org. Chem. 2021; 86: 11583
- 7 Debnath S, Chauhan S, Kumara Swamy KC. Org. Biomol. Chem. 2023; 21: 5021
- 8a Kumara Swamy KC, Anitha M, Gangadhararao G, Suresh RR. Pure Appl. Chem. 2017; 89: 367
- 8b Anitha M, Kumara Swamy KC. Org. Biomol. Chem. 2019; 17: 5736
- 8c Shankar M, Kalyani A, Anitha M, Siva Reddy A, Kumara Swamy KC. J. Org. Chem. 2022; 87: 13683
- 9 Zhu Y, Huang Y. Synthesis 2020; 52: 1181
- 10a Bhardwaj M, Rasoolab B, Mukherjee D. Chem. Commun. 2022; 58: 7038
- 10b Gharpure SJ, Prasath V. Org. Biomol. Chem. 2014; 12: 7397
- 11 CCDC 2314082 (4af), 2314083 (5ac), 2314084 (7ac), 2314085 (8ac), and 2314086 (8ae) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
For reviews, see:
For selected NHC/amine-catalyzed reactions, see:
For selected phosphine-catalyzed reactions, see:
Annulations via diene-ammonium ion:
Annulations via diene-phosphonium ion: