Synlett 2023; 34(12): 1381-1384
DOI: 10.1055/s-0042-1752655
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Nickel-Сatalyzed Carbon–Selenium Bond Formations under Mild Conditions

Serik Zhumagazy
,
Chen Zhu
,
Huifeng Yue
,
This work was financially supported by the King Abdullah University of Science and Technology (KAUST), Saudi Arabia, Office of Sponsored Research (URF/1/4405).


Abstract

A nickel-catalyzed C–Se cross-coupling between aryl iodides and selenols is described. The newly developed catalytic methodology offers facile access to various unsymmetrical selenium-containing motifs. The reaction features excellent functional group tolerance, wide substrate scope, good efficiency, and operates under mild reaction conditions. Notably, this protocol could be readily scaled up to gram scale without the loss of yield.

Supporting Information



Publication History

Received: 22 January 2023

Accepted after revision: 27 February 2023

Article published online:
31 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Manjare ST, Kim Y, Churchill DG. Acc. Chem. Res. 2014; 47: 2985
  • 2 Xu H, Cao W, Zhang X. Acc. Chem. Res. 2013; 46: 1647
    • 3a He X, Wang X, Tse Y.-LS, Ke Z, Yeung Y.-Y. ACS Catal. 2021; 11: 12632
    • 3b Jiang Q, Li H, Zhao X. Org. Lett. 2021; 23: 8777
  • 4 Zhang Q.-B, Ban Y.-L, Yuan P.-F, Peng S.-J, Fang J.-G, Wu L.-Z, Liu Q. Green Chem. 2017; 19: 5559
    • 5a Kalaramna P, Goswami A. J. Org. Chem. 2021; 86: 9317
    • 5b Kalaramna P, Bhatt D, Sharma H, Goswami A. Eur. J. Org. Chem. 2019; 4694
    • 5c Mugesh G, du Mont W.-W, Sies H. Chem. Rev. 2001; 101: 2125
  • 6 Kumar S, Sharma N, Maurya IK, Bhasin AK, Wangoo N, Brandao P, Félix V, Bhasin K, Sharma RK. Eur. J. Med. Chem. 2016; 123: 916
    • 7a Senol E, Scattolin T, Schoenebeck F. Chem. Eur. J. 2019; 25: 9419
    • 7b Nishiyama Y, Tokunaga K, Sonoda N. Org. Lett. 1999; 1: 1725
    • 8a Didehban K, Vessally E, Hosseinian A, Edjlali L, Khosroshahi ES. RSC Adv. 2018; 8: 291
    • 8b Reddy VP, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 951
    • 8c Mukherjee N, Kundu D, Ranu BC. Adv. Synth. Catal. 2017; 359: 329
    • 9a Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051
    • 9b Lee S.-C, Guo L, Rueping M. Chem. Commun. 2019; 55: 14984
    • 9c Guo L, Rueping M. Acc. Chem. Res. 2018; 51: 1185
    • 9d Ishida N, Masuda Y, Imamura Y, Yamazaki K, Murakami M. J. Am. Chem. Soc. 2019; 141: 19611
    • 9e Ishida N, Hori Y, Okumura S, Murakami M. J. Am. Chem. Soc. 2018; 141: 84
    • 9f Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 9g Masuda Y, Ishida N, Murakami M. Eur. J. Org. Chem. 2016; 5822
    • 9h Ishida N, Masuda Y, Ishikawa N, Murakami M. Asian J. Org. Chem. 2017; 6: 669
    • 9i Ishida N, Masuda Y, Sun F, Kamae Y, Murakami M. Chem. Lett. 2019; 48: 1042
    • 9j Miura T, Miyakawa S, Nakamuro T, Murakami M. Chem. Lett. 2019; 48: 965
    • 9k Tortajada A, Borjesson M, Martin R. Acc. Chem. Res. 2021; 54: 3941
    • 9l Yi L, Ji T, Chen K-Q, Chen X-Y, Rueping M. CCS Chem. 2022; 4: 9
  • 10 Bai JH, Qi XJ, Sun W, Yu TY, Xu PF. Adv. Synth. Catal. 2021; 363: 2084
  • 11 Liu Y, Xing S, Zhang J, Liu W, Xu Y, Zhang Y, Yang K, Yang L, Jiang K, Shao X. Org. Chem. Front. 2022; 9: 1375
  • 12 Kundu D. RSC Adv. 2021; 11: 6682
  • 13 Pan L, Cooke MV, Spencer A, Laulhé S. Adv. Synth. Catal. 2022; 364: 420
  • 14 Zhu C, Zhumagazy S, Yue H, Rueping M. Chem. Commun. 2022; 58: 96
    • 15a Kundu D, Ahammed S, Ranu BC. Green Chem. 2012; 14: 2024
    • 15b Balaguez RA, Ricordi VG, Freitas CS, Perin G, Schumacher RF, Alves D. Tetrahedron Lett. 2014; 55: 1057
    • 16a Jana S, Chakraborty A, Mondal S, Hajra A. RSC Adv. 2015; 5: 77534
    • 16b Thurow S, Penteado F, Perin G, Jacob R, Alves D, Lenardão E. Green Chem. 2014; 16: 3854
    • 16c Freitas CS, Barcellos AM, Ricordi VG, Pena JM, Perin G, Jacob RG, Lenardao EJ, Alves D. Green Chem. 2011; 13: 2931
    • 16d Zimmermann EG, Thurow S, Freitas CS, Mendes SR, Perin G, Alves D, Jacob RG, Lenardão EJ. Molecules 2013; 18: 4081
  • 17 Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 18a Zhu C, Yue H, Jia J, Rueping M. Angew. Chem. Int. Ed. 2021; 60: 17810
    • 18b Zhu C, Kale AP, Yue H, Rueping M. JACS Au 2021; 1: 1057
    • 18c Zhu C, Yue H, Nikolaienko P, Rueping M. CCS Chem. 2020; 2: 179
    • 18d Yue H, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 1371
    • 18e Lee SC, Liao HH, Chatupheeraphat A, Rueping M. Chem. Eur. J. 2018; 24: 3608
    • 18f Yue H, Zhu C, Shen L, Geng Q, Hock KJ, Yuan T, Cavallo L, Rueping M. Chem. Sci. 2019; 10: 4430
    • 18g Dewanji A, Krach P, Rueping M. Angew. Chem. Int. Ed. 2019; 58: 3566
    • 18h Huang L, Ji T, Rueping M. J. Am. Chem. Soc. 2020; 142: 3532
  • 19 General Procedure A dry 5 mL vial equipped with a stirring bar was charged with an aryl iodide 1 (0.4 mmol, 2 equiv), dtbbpy (5.4 mg, 0.02 mmol, 10 mol%), Ni(COD)2 (5.5 mg, 0.02 mmol, 10 mol%), and selenide salt 2 (if applied, 0.2 mmol, 1 equiv, without the addition of DBU) in a glovebox. Anhydrous and degassed CH3CN (1.0 mL), phenylselenol (if applied, 21.4 μL, 0.2 mmol, 1 equiv), and DBU (59.7 μL, 0.4 mmol, 2 equiv) was added subsequently via syringe. The reaction mixture was stirred for 12 h under 40 °C. After the reaction is completed, the mixture was concentrated under vacuum and the product was purified by flash column chromatography on silica gel using hexane/EtOAc as eluent. (4-Methoxyphenyl)(phenyl)selane (3a) Yield 90% (47.7 mg). 1H NMR (500 MHz, CDCl3): δ = 7.56 (d, J = 8.7 Hz, 2 H), 7.39–7.36 (m, 2 H), 7.28–7.22 (m, 3 H), 6.92–6.89 (m, 2 H), 3.85 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 159.8, 136.6, 133.2, 130.9, 129.2, 126.5, 120.0, 115.2, 55.3. 4-(Cyclohexylselanyl)benzonitrile (3ac) Yield 72% (19 mg). 1H NMR (500 MHz, CDCl3): δ = 7.56 (dd, J = 8.3, 1.8 Hz, 2 H), 7.54–7.48 (m, 2 H), 3.46 (td, J = 10.1, 4.8 Hz, 1 H), 2.07 (dd, J = 13.4, 4.2 Hz, 2 H), 1.79 (dt, J = 14.1, 4.3 Hz, 2 H), 1.69–1.64 (m, 1 H), 1.62–1.55 (m, 2 H), 1.45–1.31 (m, 3 H). 13C NMR (126 MHz, CDCl3): δ = 138.2, 132.7, 132.1, 118.9, 109.9, 43.3, 34.0, 26.7, 25.6. HRMS (ESI): m/z calcd for C13H15NSe [M+Na]+: 288.02619; found: 288.02628.