Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(17): 1997-2000
DOI: 10.1055/s-0042-1752718
DOI: 10.1055/s-0042-1752718
letter
Carbene-Catalyzed Regioselective Addition of Oxindoles to Ynals for Quick Access to Allenes
We acknowledge funding supports from Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province (Qianjiaohe KY number (2020)004); Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023) at Guizhou University.
Abstract
A catalytic regioselective addition reaction of oxindoles with ynals is developed. Allene-containing derivatives bearing various substituents and substitution patterns are afforded as the products in generally moderate to good yields with moderate diastereoselectivities. Several of allenes obtained from this protocol are valuable in the development of novel bactericides for plant protection.
Key words
N-heterocyclic carbene - regioselective addition - allene - organocatalysis - plant protectionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1752718.
- Supporting Information
Publication History
Received: 16 March 2023
Accepted after revision: 22 May 2023
Article published online:
29 June 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Roder AH, Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196
- 1b Egron D, Rigaud CP, Gosselin G, Aubertin AM, Gatanaga H, Mitsuya H, Zemlickad J, Imbach J.-L. Bioorg. Med. Chem. Lett. 2002; 12: 265
- 1c Jian YJ, Wu Y. Org. Biomol. Chem. 2010; 8: 1905
- 1d Wu Y, Zhang Y, Hao H.-D. Synlett 2010; 905
- 1e Collins PW, Djuric SW. Chem. Rev. 1993; 93: 1533
- 2a Bates RW, Satcharoen V. Chem. Soc. Rev. 2002; 31: 12
- 2b Lopez F, Mascarenas JL. Chem. Soc. Rev. 2014; 43: 2904
- 2c Lu T, Lu Z, Ma ZX, Zhang Y, Hsung RP. Chem. Rev. 2013; 113: 4862
- 2d Ma S. Chem. Rev. 2005; 105: 2829
- 3 Sun T, Deutsch C, Krause N. Org. Biomol. Chem. 2012; 10: 5965
- 4 Gordo J, Tabacchi R. J. Org. Chem. 1992; 57: 4728
- 5a Peris E. Chem. Rev. 2018; 118: 9988
- 5b Zhao Q, Meng G, Nolan SP, Szostak M. Chem. Rev. 2020; 120: 1981
- 6 Barik S, Biju AT. Chem. Commun. 2020; 56: 15484
- 7 Wen YH, Zhang ZJ, Li S, Song J, Gong LZ. Nat. Commun. 2022; 13: 1344
- 8 Zhao C, Guo D, Munkerup K, Huang KW, Li F, Wang J. Nat. Commun. 2018; 9: 611
- 9a Lv J, Xu J, Pan X, Jin Z, Chi YR. Sci. China: Chem. 2021; 64: 985
- 9b Peng X, Xu J, Li T, Chi YR, Jin Z. Chem. Sci. 2020; 11: 12533
- 9c Song R, Chi YR. Angew. Chem. Int. Ed. 2019; 58: 8628
- 9d Sun J, Xu J, Nie G, Jin Z, Chi YR. Org. Lett. 2020; 22: 2595
- 9e Yang X, Wei L, Wu Y, Zhou L, Zhang X, Chi YR. Angew. Chem. Int. Ed. 2023; 62: e202211977
- 9f Zheng P, Wu S, Mou C, Xue W, Jin Z, Chi YR. Org. Lett. 2019; 21: 5026
- 10a Cai F, Pu X, Qi X, Lynch V, Radha A, Ready JM. J. Am. Chem. Soc. 2011; 133: 18066
- 10b He CY, Tan YX, Wang X, Ding R, Wang YF, Wang F, Gao D, Tian P, Lin GQ. Nat. Commun. 2020; 11: 4293
- 10c Pu X, Qi X, Read JM. J. Am. Chem. Soc. 2009; 131: 10364
- 10d Searles S, Nassim YL. B, Tran M.-TR. L. P. T, Crabbi P. J. Chem. Soc., Perkin Trans. 1 1984; 747
- 10e Huang X, Ma S. Acc. Chem. Res. 2019; 52: 1301
- 10f Song S, Zhou J, Fu C, Ma S. Nat. Commun. 2019; 10: 507
- 10g Wang Y, Zhang W, Ma S. J. Am. Chem. Soc. 2013; 135: 11517
- 10h Zheng W.-F, Zhang W, Huang C, Wu P, Qian H, Wang L, Guo Y.-L, Ma S. Nat. Catal. 2019; 2: 997
- 10i Li CY, Sun XL, Jing Q, Tang Y. Chem. Commun. 2006; 2980
- 10j Han JW, Tokunaga N, Hayashi T. J. Am. Chem. Soc. 2001; 123: 12915
- 10k Tap A, Blond A, Wakchaure VN, List B. Angew. Chem. Int. Ed. 2016; 55: 8962
- 10l Cowen BJ, Saunders LB, Miller SJ. J. Am. Chem. Soc. 2009; 131: 6105
- 10m Mbofana CT, Miller SJ. J. Am. Chem. Soc. 2014; 136: 3285
- 12 Li X, Xu J, Li SJ, Qu LB, Li Z, Chi YR, Wei D, Lan Y. Chem. Sci. 2020; 11: 7214
- 13 Kerr MS, Read de Alaniz J, Rovis T. J. Am. Chem. Soc. 2002; 124: 10298
- 14 Enders D, Balensiefer T. Acc. Chem. Res. 2004; 37: 534
- 15 Wheeler P, Vora HU, Rovis T. Chem. Sci. 2013; 4: 1674
- 16 General Procedure for Synthesizing Allenes Under nitrogen atmosphere, 1 (0.10 mmol), 2 (0.10 mmol), pre-NHC (0.02 mmol), base (0.05 mmol), DQ (0.12 mmol), and 4Å MS (100 mg) was dissolved in anhydrous THF (1 mL), then i-PrOH (100 μL) was added. The reaction mixture was allowed to stir for 5 h at room temperature. Then the mixture was concentrated under reduced pressure. The resulting crude residue was purified by column chromatography on silica gel to afford the desired product. Analytical Data of 3a 1H NMR (400 MHz, CDCl3): δ = 7.82 (d, J = 8.2 Hz, 1 H), 7.45–7.19 (m, 6 H), 6.98 (t, J = 7.6 Hz, 1 H), 6.68 (d, J = 7.6 Hz, 1 H), 6.15 (s, 1 H), 5.11–4.90 (m, 1 H), 4.54 (d, J = 22.8 Hz, 1 H), 3.70 (s, 3 H), 1.60 (s, 9 H), 1.19 (dd, J = 10.3, 6.3 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 219.8, 169.4 (d, J = 22.1 Hz), 165.0, 163.0, 148.5, 140.0 (d, J = 5.4 Hz), 134.1, 131.6 (d, J = 2.7 Hz), 130.5, 128.3, 128.0, 125.7, 124.3 (d, J = 2.6 Hz), 123.6 (d, J = 18.6 Hz), 115.1, 101.3 (d, J = 2.5 Hz), 94.9, 92.6 (d, J = 199.2 Hz), 84.8, 69.0, 53.0, 50.1 (d, J = 25.5 Hz), 28.0, 21.7 (d, J = 3.3 Hz). 19F NMR (377 MHz, CDCl3): δ = –158.2. HRMS (ESI): m/z calcd for C29H30F2NO7Na+ [M + Na]+: 546.1899; found: 546.1893. See the Supporting Information for full details and graphical guide.
- 17 Qi P, Wang N, Zhang T, Feng Y, Zhou X, Zeng D, Meng J, Liu L, Jin L, Yang S. Int. J. Mol. Sci. 2023; 24: 2897