Semin Thromb Hemost 2023; 49(03): 284-294
DOI: 10.1055/s-0042-1758059
Review Article

From the Discovery of ADAMTS13 to Current Understanding of Its Role in Health and Disease

1   Laboratorio de Hemostasia y Trombosis, IMEX-CONICET-Academia Nacional de Medicina de Buenos Aires, CABA, Argentina
,
2   Departamento de Hemostasia y Trombosis, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina de Buenos Aires, CABA, Argentina
,
1   Laboratorio de Hemostasia y Trombosis, IMEX-CONICET-Academia Nacional de Medicina de Buenos Aires, CABA, Argentina
,
2   Departamento de Hemostasia y Trombosis, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina de Buenos Aires, CABA, Argentina
,
1   Laboratorio de Hemostasia y Trombosis, IMEX-CONICET-Academia Nacional de Medicina de Buenos Aires, CABA, Argentina
2   Departamento de Hemostasia y Trombosis, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina de Buenos Aires, CABA, Argentina
› Author Affiliations
Funding Our work is supported by CONICET, Fundación Rene Barón, and Academia Nacional de Medicina (Buenos Aires), Argentina.

Abstract

ADAMTS13 (a disintegrin-like metalloprotease domain with thrombospondin type 1 motif, member 13) is a protease of crucial importance in the regulation of the size of von Willebrand factor multimers. Very low ADAMTS13 activity levels result in thrombotic thrombocytopenic purpura, a rare and life-threatening disease. The mechanisms involved can either be acquired (immune-mediated thrombotic thrombocytopenic purpura [iTTP]) or congenital (cTTP, Upshaw–Schulman syndrome) caused by the autosomal recessive inheritance of disease-causing variants (DCVs) located along the ADAMTS13 gene, which is located in chromosome 9q34. Apart from its role in TTP, and as a regulator of microthrombosis, ADAMTS13 has begun to be identified as a prognostic and/or diagnostic marker of other diseases, such as those related to inflammatory processes, liver damage, metastasis of malignancies, sepsis, and different disorders related to angiogenesis. Since its first description almost 100 years ago, the improvement of laboratory tests and the description of novel DCVs along the ADAMTS13 gene have contributed to a better and faster diagnosis of patients under critical conditions. The ability of ADAMTS13 to dissolve platelet aggregates in vitro and its antithrombotic properties makes recombinant human ADAMTS13 treatment a potential therapeutic approach targeting not only patients with cTTP but also other medical conditions.



Publication History

Article published online:
11 November 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Kappler S, Ronan-Bentle S, Graham A. Thrombotic microangiopathies (TTP, HUS, HELLP). Hematol Oncol Clin North Am 2017; 31 (06) 1081-1103
  • 2 Dos Santos C, Paiva J, Romero ML. et al. Thrombotic microangiopathies: First report of 294 cases from a single institution experience in Argentina. eJHaem 2021; 2 (02) 149-156
  • 3 Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc NY Pathol Soc 1924; 24: 21-24
  • 4 Singer K, Bornstein FP, Wile SA. Thrombotic thrombocytopenic purpura; hemorrhagic diathesis with generalized platelet thromboses. Blood 1947; 2 (06) 542-554
  • 5 Schulman I, Pierce M, Lukens A, Currimbhoy Z. Studies on thrombopoiesis. I. A factor in normal human plasma required for platelet production; chronic thrombocytopenia due to its deficiency. Blood 1960; 16: 943-957
  • 6 Upshaw Jr JD. Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N Engl J Med 1978; 298 (24) 1350-1352
  • 7 Amorosi EL, Ultmann JE. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine (Baltimore) 1966; 45: 139-159
  • 8 Bukowski RM, King JW, Hewlett JS. Plasmapheresis in the treatment of thrombotic thrombocytopenic purpura. Blood 1977; 50 (03) 413-417
  • 9 Rock GA, Shumak KH, Buskard NA. et al; Canadian Apheresis Study Group. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. N Engl J Med 1991; 325 (06) 393-397
  • 10 Bell WR, Braine HG, Ness PM, Kickler TS. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med 1991; 325 (06) 398-403
  • 11 Moake JL, Rudy CK, Troll JH. et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 1982; 307 (23) 1432-1435
  • 12 Furlan M, Robles R, Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 1996; 87 (10) 4223-4234
  • 13 Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 1996; 87 (10) 4235-4244
  • 14 Furlan M, Robles R, Galbusera M. et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med 1998; 339 (22) 1578-1584
  • 15 Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998; 339 (22) 1585-1594
  • 16 Levy GG, Nichols WC, Lian EC. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413 (6855): 488-494
  • 17 Mariotte E, Azoulay E, Galicier L. et al; French Reference Center for Thrombotic Microangiopathies. Epidemiology and pathophysiology of adulthood-onset thrombotic microangiopathy with severe ADAMTS13 deficiency (thrombotic thrombocytopenic purpura): a cross-sectional analysis of the French national registry for thrombotic microangiopathy. Lancet Haematol 2016; 3 (05) e237-e245
  • 18 Sukumar S, Lämmle B, Cataland SR. Thrombotic thrombocytopenic purpura: pathophysiology, diagnosis, and management. J Clin Med 2021; 10 (03) 536-560
  • 19 Joly BS, Coppo P, Veyradier A. Thrombotic thrombocytopenic purpura. Blood 2017; 129 (21) 2836-2846
  • 20 Rogers HJ, Allen C, Lichtin AE. Thrombotic thrombocytopenic purpura: the role of ADAMTS13. Cleve Clin J Med 2016; 83 (08) 597-603
  • 21 Ferrari S, Mudde GC, Rieger M, Veyradier A, Kremer Hovinga JA, Scheiflinger F. IgG subclass distribution of anti-ADAMTS13 antibodies in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2009; 7 (10) 1703-1710
  • 22 Reese JA, Muthurajah DS, Kremer Hovinga JA, Vesely SK, Terrell DR, George JN. Children and adults with thrombotic thrombocytopenic purpura associated with severe, acquired ADAMTS13 deficiency: comparison of incidence, demographic and clinical features. Pediatr Blood Cancer 2013; 60 (10) 1676-1682
  • 23 Zhao T, Fan S, Sun L. The global carrier frequency and genetic prevalence of Upshaw-Schulman syndrome. BMC Genom Data 2021; 22 (01) 50
  • 24 Tarasco E, Bütikofer L, Friedman KD. et al. Annual incidence and severity of acute episodes in hereditary thrombotic thrombocytopenic purpura. Blood 2021; 137 (25) 3563-3575
  • 25 Kokame K, Matsumoto M, Soejima K. et al. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity. Proc Natl Acad Sci U S A 2002; 99 (18) 11902-11907
  • 26 Fujimura Y, Matsumoto M, Isonishi A. et al. Natural history of Upshaw-Schulman syndrome based on ADAMTS13 gene analysis in Japan. J Thromb Haemost 2011; 9 (Suppl. 01) 283-301
  • 27 Tsai HM. Pathophysiology of thrombotic thrombocytopenic purpura. Int J Hematol 2010; 91 (01) 1-19
  • 28 Scully M, Hunt BJ, Benjamin S. et al; British Committee for Standards in Haematology. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol 2012; 158 (03) 323-335
  • 29 Matsumoto M, Fujimura Y, Wada H. et al; For TTP Group of Blood Coagulation Abnormalities Research Team, Research on Rare and Intractable Disease supported by Health, Labour, and Welfare Sciences Research Grants. Diagnostic and treatment guidelines for thrombotic thrombocytopenic purpura (TTP) 2017 in Japan. Int J Hematol 2017; 106 (01) 3-15
  • 30 Bentley MJ, Lehman CM, Blaylock RC, Wilson AR, Rodgers GM. The utility of patient characteristics in predicting severe ADAMTS13 deficiency and response to plasma exchange. Transfusion 2010; 50 (08) 1654-1664
  • 31 Coppo P, Schwarzinger M, Buffet M. et al; French Reference Center for Thrombotic Microangiopathies. Predictive features of severe acquired ADAMTS13 deficiency in idiopathic thrombotic microangiopathies: the French TMA reference center experience. PLoS One 2010; 5 (04) e10208
  • 32 Bendapudi PK, Hurwitz S, Fry A. et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol 2017; 4 (04) e157-e164
  • 33 Zheng XL, Vesely SK, Cataland SR. et al. ISTH guidelines for treatment of thrombotic thrombocytopenic purpura. J Thromb Haemost 2020; 18 (10) 2496-2502
  • 34 Upadhyay VA, Geisler BP, Sun L. et al. Utilizing a PLASMIC score-based approach in the management of suspected immune thrombotic thrombocytopenic purpura: a cost minimization analysis within the Harvard TMA Research Collaborative. Br J Haematol 2019; 186 (03) 490-498
  • 35 Liu A, Dhaliwal N, Upreti H. et al. Reduced sensitivity of PLASMIC and French scores for the diagnosis of thrombotic thrombocytopenic purpura in older individuals. Transfusion 2021; 61 (01) 266-273
  • 36 Fage N, Orvain C, Henry N. et al. Proteinuria increases the PLASMIC and French scores performance to predict thrombotic thrombocytopenic purpura in patients with thrombotic microangiopathy syndrome. Kidney Int Rep 2021; 7 (02) 221-231
  • 37 Camilleri RS, Scully M, Thomas M. et al. A phenotype-genotype correlation of ADAMTS13 mutations in congenital thrombotic thrombocytopenic purpura patients treated in the United Kingdom. J Thromb Haemost 2012; 10 (09) 1792-1801
  • 38 Jian C, Xiao J, Gong L. et al. Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Blood 2012; 119 (16) 3836-3843
  • 39 Uemura M, Fujimura Y, Ko S, Matsumoto M, Nakajima Y, Fukui H. Pivotal role of ADAMTS13 function in liver diseases. Int J Hematol 2010; 91 (01) 20-29
  • 40 Suzuki M, Murata M, Matsubara Y. et al. Detection of von Willebrand factor-cleaving protease (ADAMTS-13) in human platelets. Biochem Biophys Res Commun 2004; 313 (01) 212-216
  • 41 Manea M, Kristoffersson A, Schneppenheim R. et al. Podocytes express ADAMTS13 in normal renal cortex and in patients with thrombotic thrombocytopenic purpura. Br J Haematol 2007; 138 (05) 651-662
  • 42 Majerus EM, Zheng X, Tuley EA, Sadler JE. Cleavage of the ADAMTS13 propeptide is not required for protease activity. J Biol Chem 2003; 278 (47) 46643-46648
  • 43 Fujikawa K, Suzuki H, McMullen B, Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 2001; 98 (06) 1662-1666
  • 44 Mannucci PM, Canciani MT, Forza I, Lussana F, Lattuada A, Rossi E. Changes in health and disease of the metalloprotease that cleaves von Willebrand factor. Blood 2001; 98 (09) 2730-2735
  • 45 Gerritsen HE, Turecek PL, Schwarz HP, Lämmle B, Furlan M. Assay of von Willebrand factor (vWF)-cleaving protease based on decreased collagen binding affinity of degraded vWF: a tool for the diagnosis of thrombotic thrombocytopenic purpura (TTP). Thromb Haemost 1999; 82 (05) 1386-1389
  • 46 Obert B, Tout H, Veyradier A, Fressinaud E, Meyer D, Girma JP. Estimation of the von Willebrand factor-cleaving protease in plasma using monoclonal antibodies to vWF. Thromb Haemost 1999; 82 (05) 1382-1385
  • 47 Tsai HM, Sussman II, Nagel RL. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood 1994; 83 (08) 2171-2179
  • 48 Böhm M, Vigh T, Scharrer I. Evaluation and clinical application of a new method for measuring activity of von Willebrand factor-cleaving metalloprotease (ADAMTS13). Ann Hematol 2002; 81 (08) 430-435
  • 49 Kokame K, Nobe Y, Kokubo Y, Okayama A, Miyata T. FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay. Br J Haematol 2005; 129 (01) 93-100
  • 50 Muia J, Gao W, Haberichter SL. et al. An optimized fluorogenic ADAMTS13 assay with increased sensitivity for the investigation of patients with thrombotic thrombocytopenic purpura. J Thromb Haemost 2013; 11 (08) 1511-1518
  • 51 Favresse J, Lardinois B, Chatelain B, Jacqmin H, Mullier F. Evaluation of the fully automated HemosIL Acustar ADAMTS13 activity assay. Thromb Haemost 2018; 118 (05) 942-944
  • 52 Favaloro EJ, Mohammed S, Chapman K. et al. A multicenter laboratory assessment of a new automated chemiluminescent assay for ADAMTS13 activity. J Thromb Haemost 2021; 19 (02) 417-428
  • 53 Moore GW, Meijer D, Griffiths M. et al. A multi-center evaluation of TECHNOSCREEN® ADAMTS-13 activity assay as a screening tool for detecting deficiency of ADAMTS-13. J Thromb Haemost 2020; 18 (07) 1686-1694
  • 54 Bettoni G, Palla R, Valsecchi C. et al. ADAMTS-13 activity and autoantibodies classes and subclasses as prognostic predictors in acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2012; 10 (08) 1556-1565
  • 55 Lotta LA, Valsecchi C, Pontiggia S. et al. Measurement and prevalence of circulating ADAMTS13-specific immune complexes in autoimmune thrombotic thrombocytopenic purpura. J Thromb Haemost 2014; 12 (03) 329-336
  • 56 Mancini I, Ferrari B, Valsecchi C. et al; Italian Group of TTP Investigators. ADAMTS13-specific circulating immune complexes as potential predictors of relapse in patients with acquired thrombotic thrombocytopenic purpura. Eur J Intern Med 2017; 39: 79-83
  • 57 Kempfer AC, Paiva J, Sanchez-Luceros A. et al. Relationship between ADAMTS13 antigen (Ag) and free IgG anti-ADAMTS13 antibody (free IgG ab), functional ADAMTS13 inhibitor (FI) and circulating immune complexes (CIC) using two ELISA techniques, in patients (P) with acquired thrombotic thrombocytopenic purpura (aTTP). [abstract PB 710] Res Pract Thromb Haemost 2017; 1 (S1): 1300
  • 58 Mackie I, Mancini I, Muia J. et al. International Council for Standardization in Haematology (ICSH) recommendations for laboratory measurement of ADAMTS13. Int J Lab Hematol 2020; 42 (06) 685-696
  • 59 Meyer SC, Sulzer I, Lämmle B, Kremer Hovinga JA. Hyperbilirubinemia interferes with ADAMTS-13 activity measurement by FRETS-VWF73 assay: diagnostic relevance in patients suffering from acute thrombotic microangiopathies. J Thromb Haemost 2007; 5 (04) 866-867
  • 60 Zhou Z, Han H, Cruz MA, López JA, Dong JF, Guchhait P. Haemoglobin blocks von Willebrand factor proteolysis by ADAMTS-13: a mechanism associated with sickle cell disease. Thromb Haemost 2009; 101 (06) 1070-1077
  • 61 Muia J, Zhu J, Gupta G. et al. Allosteric activation of ADAMTS13 by von Willebrand factor. Proc Natl Acad Sci U S A 2014; 111 (52) 18584-18589
  • 62 Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, Fujikawa K. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem 2001; 276 (44) 41059-41063
  • 63 Rim JH, Choi YJ, Gee HY. Genomic landscape and mutational spectrum of ADAMTS family genes in Mendelian disorders based on gene evidence review for variant interpretation. Biomolecules 2020; 10 (03) 449
  • 64 Jiang Y, Huang D, Kondo Y. et al. Novel mutations in ADAMTS13 CUB domains cause abnormal pre-mRNA splicing and defective secretion of ADAMTS13. J Cell Mol Med 2020; 24 (07) 4356-4361
  • 65 Plaimauer B, Fuhrmann J, Mohr G. et al. Modulation of ADAMTS13 secretion and specific activity by a combination of common amino acid polymorphisms and a missense mutation. Blood 2006; 107 (01) 118-125
  • 66 Kempfer AC, Powazniak Y, Calderazzo JC. et al. Human umbilical vein endothelial cells, platelets and human tumor cell lines express isoforms 2 and 3 of ADAMTS13 [abstract PB 3.33–3]. J Thromb Haemost 2013; 11 (S 2): 790
  • 67 Paiva J, Kempfer AC, Alberto MF. et al. mRNA Identification of a novel isoform (ISF) and ISF3 from ADAMTS13 in different types of cells. [abstract PB696] Res Pract Thromb Haemost 2017; 1 (S1): 1300
  • 68 Shomron N, Hamasaki-Katagiri N, Hunt R. et al. A splice variant of ADAMTS13 is expressed in human hepatic stellate cells and cancerous tissues. Thromb Haemost 2010; 104 (03) 531-535
  • 69 Crawley JT, Scully MA. Thrombotic thrombocytopenic purpura: basic pathophysiology and therapeutic strategies. Hematology (Am Soc Hematol Educ Program) 2013; 2013: 292-299
  • 70 Tsai HM. Shear stress and von Willebrand factor in health and disease. Semin Thromb Hemost 2003; 29 (05) 479-488
  • 71 Harrison HN. Thrombotic thrombocytopenic purpura occurring in the puerperium; associated pancreatic islet-cell necrosis. AMA Arch Intern Med 1958; 102 (01) 124-130
  • 72 May Jr HV, Harbert Jr GM, Thornton Jr WN. Thrombotic thrombocytopenic purpura associated with pregnancy. Am J Obstet Gynecol 1976; 126 (04) 452-458
  • 73 Calderazzo JC, Kempfer A, Powazniak Y. et al. A new ADAMTS13 missense mutation (D1362V) in thrombotic thrombocytopenic purpura diagnosed during pregnancy. Thromb Haemost 2012; 108 (02) 401-403
  • 74 Moatti-Cohen M, Garrec C, Wolf M. et al; French Reference Center for Thrombotic Microangiopathies. Unexpected frequency of Upshaw-Schulman syndrome in pregnancy-onset thrombotic thrombocytopenic purpura. Blood 2012; 119 (24) 5888-5897
  • 75 Sánchez-Luceros A, Farías CE, Amaral MM. et al. von Willebrand factor-cleaving protease (ADAMTS13) activity in normal non-pregnant women, pregnant and post-delivery women. Thromb Haemost 2004; 92 (06) 1320-1326
  • 76 Sánchez-Luceros A, Meschengieser SS, Marchese C. et al. Factor VIII and von Willebrand factor changes during normal pregnancy and puerperium. Blood Coagul Fibrinolysis 2003; 14 (07) 647-651
  • 77 Perez Botero J, Reese JA, George JN, McIntosh JJ. Severe thrombocytopenia and microangiopathic hemolytic anemia in pregnancy: a guide for the consulting hematologist. Am J Hematol 2021; 96 (12) 1655-1665
  • 78 Pillai VG, Bao J, Zander CB. et al. Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of inflammation to TTP. Blood 2016; 128 (01) 110-119
  • 79 Wang Y, Chen J, Ling M, López JA, Chung DW, Fu X. Hypochlorous acid generated by neutrophils inactivates ADAMTS13: an oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation. J Biol Chem 2015; 290 (03) 1422-1431
  • 80 Fu X, Chen J, Gallagher R, Zheng Y, Chung DW, López JA. Shear stress-induced unfolding of VWF accelerates oxidation of key methionine residues in the A1A2A3 region. Blood 2011; 118 (19) 5283-5291
  • 81 Chauhan AK, Kisucka J, Brill A, Walsh MT, Scheiflinger F, Wagner DD. ADAMTS13: a new link between thrombosis and inflammation. J Exp Med 2008; 205 (09) 2065-2074
  • 82 Wang A, Liu F, Dong N. et al. Thrombospondin-1 and ADAMTS13 competitively bind to VWF A2 and A3 domains in vitro. Thromb Res 2010; 126 (04) e260-e265
  • 83 Reuken PA, Kussmann A, Kiehntopf M. et al. Imbalance of von Willebrand factor and its cleaving protease ADAMTS13 during systemic inflammation superimposed on advanced cirrhosis. Liver Int 2015; 35 (01) 37-45
  • 84 Nguyen TC, Liu A, Liu L. et al. Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica 2007; 92 (01) 121-124
  • 85 Crawley JT, Lam JK, Rance JB, Mollica LR, O'Donnell JS, Lane DA. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood 2005; 105 (03) 1085-1093
  • 86 Bernardo A, Ball C, Nolasco L, Moake JF, Dong JF. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultra large von Willebrand factor multimers under flow. Blood 2004; 104 (01) 100-106
  • 87 Bockmeyer CL, Claus RA, Budde U. et al. Inflammation-associated ADAMTS13 deficiency promotes formation of ultra-large von Willebrand factor. Haematologica 2008; 93 (01) 137-140
  • 88 Singh K, Kwong AC, Madarati H. et al. Characterization of ADAMTS13 and von Willebrand factor levels in septic and non-septic ICU patients. PLoS One 2021; 16 (02) e0247017
  • 89 Shim CY, Liu YN, Atkinson T. et al. Molecular imaging of platelet-endothelial interactions and endothelial von Willebrand factor in early and mid-stage atherosclerosis. Circ Cardiovasc Imaging 2015; 8 (07) e002765
  • 90 Xu H, Cao Y, Yang X. et al. ADAMTS13 controls vascular remodeling by modifying VWF reactivity during stroke recovery. Blood 2017; 130 (01) 11-22
  • 91 Urashima S, Tsutsumi M, Nakase K, Wang JS, Takada A. Studies on capillarization of the hepatic sinusoids in alcoholic liver disease. Alcohol Alcohol Suppl 1993; 1B: 77-84
  • 92 Albornoz L, Alvarez D, Otaso JC. et al. Von Willebrand factor could be an index of endothelial dysfunction in patients with cirrhosis: relationship to degree of liver failure and nitric oxide levels. J Hepatol 1999; 30 (03) 451-455
  • 93 Uemura M, Fujimura Y, Ko S, Matsumoto M, Nakajima Y, Fukui H. Determination of ADAMTS13 and its clinical significance for ADAMTS13 supplementation therapy to improve the survival of patients with decompensated liver cirrhosis. Int J Hepatol 2011; 2011: 759047
  • 94 Fukui S, Gutch S, Fukui S, Chu L, Wagner DD. Anti-inflammatory protective effect of ADAMTS-13 in murine arthritis models. J Thromb Haemost 2022; 20 (10) 2386-2393
  • 95 Zhao BQ, Chauhan AK, Canault M. et al. von Willebrand factor-cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood 2009; 114 (15) 3329-3334
  • 96 South K, Luken BM, Crawley JT. et al. Conformational activation of ADAMTS13. Proc Natl Acad Sci U S A 2014; 111 (52) 18578-18583
  • 97 South K, Denorme F, Salles-Crawley II, De Meyer SF, Lane DA. Enhanced activity of an ADAMTS-13 variant (R568K/F592Y/R660K/Y661F/Y665F) against platelet agglutination in vitro and in a murine model of acute ischemic stroke. J Thromb Haemost 2018; 16 (11) 2289-2299
  • 98 Jain N, Marquez C, Martell L. Recombinant ADAMTS13 for patients with severe congenital thrombotic thrombocytopenic purpura: design of a phase 3b open-label continuation study of prophylactic and on-demand treatment. Blood 2021; 138 (01) 4252
  • 99 Favaloro EJ, Henry BM, Lippi G. Increased VWF and decreased ADAMTS-13 in COVID-19: creating a milieu for (micro)thrombosis. Semin Thromb Hemost 2021; 47 (04) 400-418
  • 100 Ward SE, Curley GF, Lavin M. et al; Irish COVID-19 Vasculopathy Study (ICVS) Investigators. Von Willebrand factor propeptide in severe coronavirus disease 2019 (COVID-19): evidence of acute and sustained endothelial cell activation. Br J Haematol 2021; 192 (04) 714-719
  • 101 Grandone E, Vimercati A, Sorrentino F. et al. Obstetric outcomes in pregnant COVID-19 women: the imbalance of von Willebrand factor and ADAMTS13 axis. BMC Pregnancy Childbirth 2022; 22 (01) 142
  • 102 Maayan H, Kirgner I, Gutwein O. et al. Acquired thrombotic thrombocytopenic purpura: a rare disease associated with BNT162b2 vaccine. J Thromb Haemost 2021; 19 (09) 2314-2317
  • 103 de Bruijn S, Maes MB, De Waele L, Vanhoorelbeke K, Gadisseur A. First report of a de novo iTTP episode associated with an mRNA-based anti-COVID-19 vaccination. J Thromb Haemost 2021; 19 (08) 2014-2018
  • 104 Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med 2021; 384 (22) 2092-2101
  • 105 Dykes KC, Kessler CM. First report of COVID-19 vaccine induced flare of compensated congenital thrombotic thrombocytopenic purpura. Blood Coagul Fibrinolysis 2022; 33 (01) 71-73
  • 106 Hamada E, Sakai K, Yamada S, Kubo M, Hayakawa M, Matsumoto M. No aggravation of congenital thrombotic thrombocytopenic purpura by mRNA-based vaccines against COVID-19: a Japanese registry survey. Ann Hematol 2022; 101 (05) 1115-1117
  • 107 Dos Santos C, Chavarri A, Alberto MF, Fondevila CG, Sánchez-Luceros A. Recurrence of atypical hemolytic uremic syndrome after COVID-19 vaccination. [abstract]. Can J Kidney Health Dis 2022: 9:6. Accessed August 21, 2022 at: https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-1707163
  • 108 Dias PJ, Gopal S. Refractory thrombotic thrombocytopenic purpura following influenza vaccination. Anaesthesia 2009; 64 (04) 444-446
  • 109 Kojima Y, Ohashi H, Nakamura T. et al. Acute thrombotic thrombocytopenic purpura after pneumococcal vaccination. Blood Coagul Fibrinolysis 2014; 25 (05) 512-514
  • 110 Joint CDC and FDA Statement on Johnson & Johnson COVID-19 Vaccine. Centers for Disease Control and Prevention; 2021
  • 111 FDA and CDC Lift Recommended Pause on Johnson & Johnson (Janssen) COVID-19 Vaccine Use Following Thorough Safety Review. U.S. Food and Drug Administration (FDA); 2021
  • 112 Guo R, Yang J, Liu X, Wu J, Chen Y. Increased von Willebrand factor over decreased ADAMTS-13 activity is associated with poor prognosis in patients with advanced non-small-cell lung cancer. J Clin Lab Anal 2018; 32 (01) e22219
  • 113 Bauer AT, Suckau J, Frank K. et al. von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood 2015; 125 (20) 3153-3163
  • 114 Yang AJ, Wang M, Wang Y. et al. Cancer cell-derived von Willebrand factor enhanced metastasis of gastric adenocarcinoma. Oncogenesis 2018; 7 (01) 12
  • 115 Terraube V, Marx I, Denis CV. Role of von Willebrand factor in tumor metastasis. Thromb Res 2007; 120 (Suppl. 02) S64-S70
  • 116 Weinberg RS, Grecco MO, Ferro GS. et al. A phase II dose-escalation trial of perioperative desmopressin (1-desamino-8-d-arginine vasopressin) in breast cancer patients. Springerplus 2015; 4: 428-435
  • 117 Pépin M, Kleinjan A, Hajage D. et al. ADAMTS-13 and von Willebrand factor predict venous thromboembolism in patients with cancer. J Thromb Haemost 2016; 14 (02) 306-315
  • 118 Liu C, Zhao L, Zhao J, Xu Q, Song Y, Wang H. Decreased ADAMTS-13 level is related to inflammation factors and risk stratification of acute lymphoblastic leukemia patients. Medicine (Baltimore) 2017; 96 (07) e6136
  • 119 Colonne CK, Favaloro EJ, Pasalic L. The intriguing connections between von Willebrand factor, ADAMTS13 and cancer. Healthcare (Basel) 2022; 10 (03) 557
  • 120 Ho KK, Pinsky JL, Kannel WB, Levy D. The epidemiology of heart failure: the Framingham study. J Am Coll Cardiol 1993; 22 (4, Suppl A): 6A-13A
  • 121 Reichman-Warmusz E, Brzozowa-Zasada M, Wojciechowska C, Dudek D, Warmusz O, Wojnicz R. Decreased immunoreactivity of von Willebrand factor may reflect persistent nature of the endothelial dysfunction in non-ischemic heart failure. Folia Histochem Cytobiol 2021; 59 (02) 108-113
  • 122 Corban MT, Godo S, Burczak DR. et al. Coronary endothelial dysfunction is associated with increased risk of incident atrial fibrillation. J Am Heart Assoc 2020; 9 (08) e014850
  • 123 Al-Masri AA, Habib SS, Hersi A, Al Zamil H. Effect of acute myocardial infarction on a disintegrin and metalloprotease with thrombospondin motif 13 and von Willebrand factor and their relationship with markers of inflammation. Int J Vasc Med 2020; 2020: 4981092
  • 124 Bongers TN, de Bruijne EL, Dippel DW. et al. Lower levels of ADAMTS13 are associated with cardiovascular disease in young patients. Atherosclerosis 2009; 207 (01) 250-254
  • 125 Gombos T, Makó V, Cervenak L. et al. Levels of von Willebrand factor antigen and von Willebrand factor cleaving protease (ADAMTS13) activity predict clinical events in chronic heart failure. Thromb Haemost 2009; 102 (03) 573-580
  • 126 Reardon B, Pasalic L, Favaloro EJ. The intriguing relationships of von Willebrand factor, ADAMTS13 and cardiac disease. J Cardiovasc Dev Dis 2021; 8 (09) 115
  • 127 Lazzari MA, Sanchez-Luceros A, Woods AI, Alberto MF, Meschengieser SS. Von Willebrand factor (VWF) as a risk factor for bleeding and thrombosis. Hematology 2012; 17 (Suppl. 01) S150-S152