Aktuelle Neurologie 2017; 44(05): 332-345
DOI: 10.1055/s-0043-103083
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Epilepsiechirurgie bei Kindern und Jugendlichen

Epilepsy Surgery in Children and Adolescents
Georgia Ramantani
1   Neuropädiatrie, Universitätskinderspital Zürich, Zürich, Schweiz
2   Klinik Lengg, Schweizerische Epilepsie-Klinik, Zürich, Schweiz
,
Josef Zentner
3   Neurochirurgische Klinik, Universitätsklinikum Freiburg, Freiburg
› Author Affiliations
Further Information

Publication History

Publication Date:
26 June 2017 (online)

Zusammenfassung

Die Epilepsiechirurgie hat sich in den letzten Jahren als eine besonders wirksame Behandlungsoption bei Kindern und Jugendlichen mit pharmakoresistenten strukturellen Epilepsien etabliert. Dank der fortschreitenden Entwicklungen in der Neurochirurgie, Anästhesie und Intensivmedizin sind epilepsiechirurgische Eingriffe auch bei Säuglingen möglich und können hervorragende Ergebnisse liefern, vergleichbar mit den Ergebnissen bei Kindern und Jugendlichen. Spätestens bei nachgewiesener Pharmakoresistenz sollte bei Kindern mit strukturellen Epilepsien die Möglichkeit eines epilepsiechirurgischen Eingriffes erwogen und die entsprechende prächirurgische Diagnostik in einem Epilepsiezentrum mit pädiatrischer Expertise eingeleitet werden. Fokale kortikale Dysplasien und glioneuronale Tumore sind die häufigsten Ätiologien bei pädiatrischen Patienten, die epilepsiechirurgisch versorgt werden; in beiden Fällen hängt die postoperative Anfallsfreiheit von der Vollständigkeit der Resektion ab. Im Kindesalter dominieren die multilobären und hemisphärischen Eingriffe, im Gegensatz zu den Erwachsenenkohorten mit vorwiegend resektiven Eingriffen im Bereich des Temporallappens und nur wenigen extratemporalen und hemisphärischen Eingriffen. Die Ausdehnung der Eingriffe nimmt mit dem Alter der epilepsiechirurgischen Kandidaten ab. Kleinere Kinder benötigen oft größere Resektionen, können jedoch mögliche neurologische Defizite aufgrund der funktionellen Plastizität in der Regel gut kompensieren. Die postoperative Anfallsfreiheit hängt vom Epilepsiesyndrom, der zugrunde liegenden Ätiologie und der Abgrenzbarkeit des epileptogenen Areals ab. Zwei Drittel der Kinder bleiben im Langzeitverlauf nach einem epilepsiechirurgischen Eingriff anfallsfrei. Mit der Anfallskontrolle sind oftmals wesentliche Verbesserungen der Entwicklungsverläufe zu beobachten. Neben der Weiterentwicklung nicht-invasiver Methoden in der prächirurgischen Epilepsiediagnostik ist höchste Priorität, das Intervall zwischen Feststellung der Pharmakoresistenz, prächirurgischer Abklärung und epilepsiechirurgischer Behandlung bei geeigneten Kandidaten zu verkürzen. Multizentrische Studien mit längeren Beobachtungsintervallen sind dringend erforderlich, um die Prädiktoren der Anfallsfreiheit und der positiven psychomotorischen Entwicklung der Kinder zu identifizieren und eine verbesserte Kandidatenauswahl und Beratung der Patienten und deren Familien zu ermöglichen.

Abstract

Epilepsy surgery has become established as an effective treatment option for children and adolescents with pharmacoresistant structural epilepsies. Advances in neurosurgery, anesthesia and intensive care have enabled surgical interventions in infants with excellent results. At the latest, when pharmacological resistance is demonstrated, epilepsy surgery should be considered in children with structural epilepsies. Focal cortical dysplasia and glioneuronal tumors are the most common aetiologies in pediatric patients. Postoperative seizure-freedom depends on completeness of resection. In childhood, multilobular and hemispherical interventions predominate while in adult cohorts interventions are primarily in the temporal lobe area. The extent of interventions decreases with age of the surgical candidates. Smaller children often require larger resections, but can generally compensate for neurological deficits due to functional plasticity. Postoperative seizure-freedom depends on the epilepsy syndrome, underlying aetiology and demarcation of the epileptogenic area. Post-operative, two-thirds of the children remain epilepsy-free in the long-term. Significant improvements in the development process are observed with control of epileptic attacks. In addition to the development of non-invasive methods in presurgical epilepsy diagnostics, the highest priority is to reduce the interval between determination of pharmacological resistance, pre-surgical evaluation and surgical treatment in suitable candidates. Multicentric studies with longer observation intervals are needed to identify predictors of seizure-freedom and positive psychomotor development in children and to enable improved selection of candidates and proper advice to patients and their families.

 
  • Literatur

  • 1 Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 1993; 34: 453-468
  • 2 Camfield CS, Camfield PR, Gordon K. et al. Incidence of epilepsy in childhood and adolescence: a population-based study in Nova Scotia from 1977 to 1985. Epilepsia 1996; 37: 19-23
  • 3 Berg AT, Rychlik K. The course of childhood-onset epilepsy over the first two decades: a prospective, longitudinal study. Epilepsia 2015; 56: 40-48
  • 4 Berg AT, Levy SR, Testa FM. et al. Remission of epilepsy after two drug failures in children: a prospective study. Ann Neurol 2009; 65: 510-519
  • 5 Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med 2011; 365: 919-926
  • 6 Wirrell E, Wong-Kisiel L, Mandrekar J. et al. Predictors and course of medically intractable epilepsy in young children presenting before 36 months of age: a retrospective, population-based study. Epilepsia 2012; 53: 1563-1569
  • 7 Wirrell EC. Predicting pharmacoresistance in pediatric epilepsy. Epilepsia 2013; 54 (Suppl. 02) 19-22
  • 8 Camfield C, Camfield P, Gordon K. et al. Outcome of childhood epilepsy: a population-based study with a simple predictive scoring system for those treated with medication. J Pediatr 1993; 122: 861-868
  • 9 Berg AT, Mathern GW, Bronen RA. et al. Frequency, prognosis and surgical treatment of structural abnormalities seen with magnetic resonance imaging in childhood epilepsy. Brain 2009; 132: 2785-2797
  • 10 Cross JH, Jayakar P, Nordli D. et al. International League against Epilepsy, Subcommission for Paediatric Epilepsy Surgery, Commissions of Neurosurgery and Paediatrics. Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the Subcommission for Pediatric Epilepsy Surgery. Epilepsia 2006; 47: 952-959
  • 11 Ryvlin P, Cross JH, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol 2014; 13: 1114-1126
  • 12 Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain 2001; 124: 1683-1700
  • 13 Cukiert A, Cukiert CM, Burattini JA. et al. Long-term outcome after callosotomy or vagus nerve stimulation in consecutive prospective cohorts of children with Lennox-Gastaut or Lennox-like syndrome and non-specific MRI findings. Seizure 2013; 22: 396-400
  • 14 Benifla M, Otsubo H, Ochi A. et al. Multiple subpial transections in pediatric epilepsy: indications and outcomes. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 2001; 42: 268-274
  • 15 Vasconcellos E, Wyllie E, Sullivan S. et al. Mental retardation in pediatric candidates for epilepsy surgery: the role of early seizure onset. Epilepsia 2001; 42: 268-274
  • 16 Vendrame M, Alexopoulos AV, Boyer K. et al. Longer duration of epilepsy and earlier age at epilepsy onset correlate with impaired cognitive development in infancy. Epilepsy Behav 2009; 16: 431-435
  • 17 Ramantani G, Kadish NE, Strobl K. et al. Seizure and cognitive outcomes of epilepsy surgery in infancy and early childhood. Eur J Paediatr Neurol 2013; 17: 498-506
  • 18 Loddenkemper T, Holland KD, Stanford LD. et al. Developmental outcome after epilepsy surgery in infancy. Pediatrics 2007; 119: 930-935
  • 19 Asarnow RF, LoPresti C, Guthrie D. et al. Developmental outcomes in children receiving resection surgery for medically intractable infantile spasms. Dev Med Child Neurol 1997; 39: 430-440
  • 20 Freitag H, Tuxhorn I. Cognitive function in preschool children after epilepsy surgery: rationale for early intervention. Epilepsia 2005; 46: 561-567
  • 21 Jonas R, Asarnow RF, LoPresti C. et al. Surgery for symptomatic infant-onset epileptic encephalopathy with and without infantile spasms. Neurology 2005; 64: 746-750
  • 22 Bulteau C, Otsuki T, Delalande O. Epilepsy surgery for hemispheric syndromes in infants: hemimegalencepahly and hemispheric cortical dysplasia. Brain Dev 2013; 35: 742-747
  • 23 Otsuki T, Kim H-D, Luan G. et al. Surgical versus medical treatment for children with epileptic encephalopathy in infancy and early childhood: Results of an international multicenter cohort study in Far-East Asia (the FACE study). Brain Dev 2016; 38: 449-460
  • 24 Kumar RM, Koh S, Knupp K. et al. Surgery for infants with catastrophic epilepsy: an analysis of complications and efficacy. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 2015; 31: 1479-1491
  • 25 Honda R, Kaido T, Sugai K. et al. Long-term developmental outcome after early hemispherotomy for hemimegalencephaly in infants with epileptic encephalopathy. Epilepsy Behav 2013; 29: 30-35
  • 26 Harvey AS, Cross JH, Shinnar S. et al. Defining the spectrum of international practice in pediatric epilepsy surgery patients. Epilepsia 2008; 49: 146-155
  • 27 Wiebe S, Jetté N. Epilepsy surgery utilization: who, when, where, and why?. Curr Opin Neurol 2012; 25: 187-193
  • 28 Guerrini R, Duchowny M, Jayakar P. et al. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia 2015; 56: 1669-1686
  • 29 Sisodiya SM. Surgery for malformations of cortical development causing epilepsy. Brain 2000; 123 (Pt 6): 1075-1091
  • 30 Krsek P, Maton B, Jayakar P. et al. Incomplete resection of focal cortical dysplasia is the main predictor of poor postsurgical outcome. Neurology 2009; 72: 217-223
  • 31 Eltze CM, Chong WK, Bhate S. et al. Taylor-type focal cortical dysplasia in infants: some MRI lesions almost disappear with maturation of myelination. Epilepsia 2005; 46: 1988-1992
  • 32 Gaillard WD, Chiron C, Cross JH. et al. ILAE, Committee for Neuroimaging, Subcommittee for Pediatric. Guidelines for imaging infants and children with recent-onset epilepsy. Epilepsia 2009; 50: 2147-2153
  • 33 Sankar R, Curran JG, Kevill JW. et al. Microscopic cortical dysplasia in infantile spasms: evolution of white matter abnormalities. AJNR Am J Neuroradiol 1995; 16: 1265-1272
  • 34 Blümcke I, Thom M, Aronica E. et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 2011; 52: 158-174
  • 35 Hildebrandt M, Pieper T, Winkler P. et al. Neuropathological spectrum of cortical dysplasia in children with severe focal epilepsies. Acta Neuropathol (Berl) 2005; 110: 1-11
  • 36 Ramantani G, Kadish NE, Anastasopoulos C. et al. Epilepsy surgery for glioneuronal tumors in childhood: avoid loss of time. Neurosurgery 2014; 74: 648-657 ; discussion 657
  • 37 Rudà R, Bello L, Duffau H. et al. Seizures in low-grade gliomas: natural history, pathogenesis, and outcome after treatments. Neuro-Oncol 2012; 14 (Suppl. 04) iv55-iv64
  • 38 Nolan MA, Sakuta R, Chuang N. et al. Dysembryoplastic neuroepithelial tumors in childhood: long-term outcome and prognostic features. Neurology 2004; 62: 2270-2276
  • 39 Ramantani G, Strobl K, Stathi A. et al. Reoperation for refractory epilepsy in childhood: a second chance for selected patients. Neurosurgery 2013; 73: 695-704
  • 40 Guerrini R, Rosati A, Giordano F. et al. The medical and surgical treatment of tumoral seizures: current and future perspectives. Epilepsia 2013; 54 (Suppl. 09) 84-90
  • 41 Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet 2008; 372: 657-668
  • 42 Lachhwani DK, Pestana E, Gupta A. et al. Identification of candidates for epilepsy surgery in patients with tuberous sclerosis. Neurology 2005; 64: 1651-1654
  • 43 Weiner HL, Carlson C, Ridgway EB. et al. Epilepsy surgery in young children with tuberous sclerosis: results of a novel approach. Pediatrics 2006; 117: 1494-1502
  • 44 Jansen FE, van Huffelen AC, Algra A. et al. Epilepsy surgery in tuberous sclerosis: a systematic review. Epilepsia 2007; 48: 1477-1484
  • 45 Fallah A, Rodgers SD, Weil AG. et al. Resective Epilepsy Surgery for Tuberous Sclerosis in Children: Determining Predictors of Seizure Outcomes in a Multicenter Retrospective Cohort Study. Neurosurgery 2015; 77: 517-524 ; discussion 524
  • 46 Chugani HT, Luat AF, Kumar A. et al. α-[11C]-Methyl-L-tryptophan--PET in 191 patients with tuberous sclerosis complex. Neurology 2013; 81: 674-680
  • 47 Rubí S, Costes N, Heckemann RA. et al. Positron emission tomography with α-[11C]methyl-L-tryptophan in tuberous sclerosis complex-related epilepsy. Epilepsia 2013; 54: 2143-2150
  • 48 Koh S, Jayakar P, Resnick T. et al. The localizing value of ictal SPECT in children with tuberous sclerosis complex and refractory partial epilepsy. Epileptic Disord 1999; 1: 41-46
  • 49 Aboian MS, Wong-Kisiel LC, Rank M. et al. SISCOM in children with tuberous sclerosis complex-related epilepsy. Pediatr Neurol 2011; 45: 83-88
  • 50 Kargiotis O, Lascano AM, Garibotto V. et al. Localization of the epileptogenic tuber with electric source imaging in patients with tuberous sclerosis. Epilepsy Res 2014; 108: 267-279
  • 51 Jacobs J, Rohr A, Moeller F. et al. Evaluation of epileptogenic networks in children with tuberous sclerosis complex using EEG-fMRI. Epilepsia 2008; 49: 816-825
  • 52 Leventer RJ, Jansen A, Pilz DT. et al. Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain 2010; 133: 1415-1427
  • 53 Ramantani G, Koessler L, Colnat-Coulbois S. et al. Intracranial evaluation of the epileptogenic zone in regional infrasylvian polymicrogyria. Epilepsia 2013; 54: 296-304
  • 54 Maillard L, Koessler L, Colnat-Coulbois S. et al. Combined SEEG and source localisation study of temporal lobe schizencephaly and polymicrogyria. Clin Neurophysiol 2009; 120: 1628-1636
  • 55 Wang DD, Knox R, Rolston JD. et al. Surgical management of medically refractory epilepsy in patients with polymicrogyria. Epilepsia 2016; 57: 151-161
  • 56 Wieck G, Leventer RJ, Squier WM. et al. Periventricular nodular heterotopia with overlying polymicrogyria. Brain 2005; 128: 2811-2821
  • 57 Guerrini R, Barba C. Malformations of cortical development and aberrant cortical networks: epileptogenesis and functional organization. J Clin Neurophysiol 2010; 27: 372-379
  • 58 Shain C, Ramgopal S, Fallil Z. et al. Polymicrogyria-associated epilepsy: a multicenter phenotypic study from the Epilepsy Phenome/Genome Project. Epilepsia 2013; 54: 1368-1375
  • 59 Castaño de la Mota C, Rojas MLR-F, Peñas JJG. et al. [Polymicrogyria: epidemiology, neurological and anatomical factors and clinical outcome in a series of 34 cases]. An Pediatría Barc Spain 2003 2011; 75: 358-364
  • 60 Stutterd CA, Leventer RJ. Polymicrogyria: a common and heterogeneous malformation of cortical development. Am J Med Genet C Semin Med Genet 2014; 166C: 227-239
  • 61 Guerrini R, Genton P, Bureau M. et al. Multilobar polymicrogyria, intractable drop attack seizures, and sleep-related electrical status epilepticus. Neurology 1998; 51: 504-512
  • 62 Chassoux F, Landre E, Rodrigo S. et al. Intralesional recordings and epileptogenic zone in focal polymicrogyria. Epilepsia 2008; 49: 51-64
  • 63 Rikir E, Koessler L, Gavaret M. et al. Electrical source imaging in cortical malformation-related epilepsy: a prospective EEG-SEEG concordance study. Epilepsia 2014; 55: 918-932
  • 64 Cossu M, Pelliccia V, Gozzo F. et al. Surgical treatment of polymicrogyria-related epilepsy. Epilepsia 2016; 57: 2001-2010
  • 65 Ramantani G, Kadish NE, Brandt A. et al. Seizure control and developmental trajectories after hemispherotomy for refractory epilepsy in childhood and adolescence. Epilepsia 2013; 54: 1046-1055
  • 66 Moosa ANV, Gupta A, Jehi L. et al. Longitudinal seizure outcome and prognostic predictors after hemispherectomy in 170 children. Neurology 2013; 80: 253-260
  • 67 Boshuisen K, van Schooneveld MMJ, Leijten FSS. et al. Contralateral MRI abnormalities affect seizure and cognitive outcome after hemispherectomy. Neurology 2010; 75: 1623-1630
  • 68 Bast T. Outcome after epilepsy surgery in children with MRI-negative non-idiopathic focal epilepsies. Epileptic Disord 2013; 15: 105-113
  • 69 Bien CG, Szinay M, Wagner J. et al. Characteristics and surgical outcomes of patients with refractory magnetic resonance imaging-negative epilepsies. Arch Neurol 2009; 66: 1491-1499
  • 70 McGonigal A, Bartolomei F, Régis J. et al. Stereoelectroencephalography in presurgical assessment of MRI-negative epilepsy. Brain 2007; 130: 3169-3183
  • 71 Paolicchi JM, Jayakar P, Dean P. et al. Predictors of outcome in pediatric epilepsy surgery. Neurology 2000; 54: 642-647
  • 72 Siegel AM, Jobst BC, Thadani VM. et al. Medically intractable, localization-related epilepsy with normal MRI: presurgical evaluation and surgical outcome in 43 patients. Epilepsia 2001; 42: 883-888
  • 73 Téllez-Zenteno JF, Hernández Ronquillo L, Moien-Afshari F. et al. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res 2010; 89: 310-318
  • 74 Teutonico F, Mai R, Veggiotti P. et al. Epilepsy surgery in children: evaluation of seizure outcome and predictive elements. Epilepsia 2013; 54 (Suppl. 07) 70-76
  • 75 Englot DJ, Breshears JD, Sun PP. et al. Seizure outcomes after resective surgery for extra-temporal lobe epilepsy in pediatric patients. J Neurosurg Pediatr 2013; 12: 126-133
  • 76 Focke NK, Bonelli SB, Yogarajah M. et al. Automated normalized FLAIR imaging in MRI-negative patients with refractory focal epilepsy. Epilepsia 2009; 50: 1484-1490
  • 77 Kim H, Kankirawatana P, Killen J. et al. Magnetic source imaging (MSI) in children with neocortical epilepsy: surgical outcome association with 3D post-resection analysis. Epilepsy Res 2013; 106: 164-172
  • 78 Thivard L, Bouilleret V, Chassoux F. et al. Diffusion tensor imaging can localize the epileptogenic zone in nonlesional extra-temporal refractory epilepsies when [(18)F]FDG-PET is not contributive. Epilepsy Res 2011; 97: 170-182
  • 79 Chassoux F, Rodrigo S, Semah F. et al. FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias. Neurology 2010; 75: 2168-2175
  • 80 Nguyen DK, Rochette E, Leroux J-M. et al. Value of 3.0 T MR imaging in refractory partial epilepsy and negative 1.5 T MRI. Seizure 2010; 19: 475-478
  • 81 Alarcón G, Valentín A, Watt C. et al. Is it worth pursuing surgery for epilepsy in patients with normal neuroimaging?. J Neurol Neurosurg Psychiatry 2006; 77: 474-480
  • 82 Kalamangalam GP, Pestana Knight EM, Visweswaran S. et al. Noninvasive predictors of subdural grid seizure localization in children with nonlesional focal epilepsy. J Clin Neurophysiol 2013; 30: 45-50
  • 83 Jayakar P, Dunoyer C, Dean P. et al. Epilepsy surgery in patients with normal or nonfocal MRI scans: integrative strategies offer long-term seizure relief. Epilepsia 2008; 49: 758-764
  • 84 Lazow SP, Thadani VM, Gilbert KL. et al. Outcome of frontal lobe epilepsy surgery. Epilepsia 2012; 53: 1746-1755
  • 85 Nordli DR. Varying seizure semiology according to age. Handb Clin Neurol 2013; 111: 455-460
  • 86 Ramantani G, Maillard L, Koessler L. Correlation of invasive EEG and scalp EEG. Seizure 2016; 41: 196-200
  • 87 Ramantani G, Dümpelmann M, Koessler L. et al. Simultaneous subdural and scalp EEG correlates of frontal lobe epileptic sources. Epilepsia 2014; 55: 278-288
  • 88 Ramantani G, Cosandier-Rimélé D, Schulze-Bonhage A. et al. Source reconstruction based on subdural EEG recordings adds to the presurgical evaluation in refractory frontal lobe epilepsy. Clin Neurophysiol 2013; 124: 481-491
  • 89 Munyon CN, Koubeissi MZ, Syed TU. et al. Accuracy of frame-based stereotactic depth electrode implantation during craniotomy for subdural grid placement. Stereotact Funct Neurosurg 2013; 91: 399-403
  • 90 Schmidt RF, Wu C, Lang MJ. et al. Complications of subdural and depth electrodes in 269 patients undergoing 317 procedures for invasive monitoring in epilepsy. Epilepsia 2016; 57: 1697-1708
  • 91 Bancaud J, Talairach J. [Methodology of stereo EEG exploration and surgical intervention in epilepsy]. Rev Otoneuroophtalmol 1973; 45: 315-328
  • 92 Cossu M, Schiariti M, Francione S. et al. Stereoelectroencephalography in the presurgical evaluation of focal epilepsy in infancy and early childhood. J Neurosurg Pediatr 2012; 9: 290-300
  • 93 Taussig D, Dorfmüller G, Fohlen M. et al. Invasive explorations in children younger than 3 years. Seizure 2012; 21: 631-638
  • 94 Penfield WG, Jasper HH. Epilepsy and the Functional Anatomy of the Human Brain. Boston, Mass, USA: Little Brown & Co; 1954
  • 95 Wagner K, Hader C, Metternich B. et al. Who needs a Wada test? Present clinical indications for amobarbital procedures. J Neurol Neurosurg Psychiatry 2012; 83: 503-509
  • 96 Bast T, Ramantani G, Boppel T. et al. Source analysis of interictal spikes in polymicrogyria: loss of relevant cortical fissures requires simultaneous EEG to avoid MEG misinterpretation. NeuroImage 2005; 25: 1232-1241
  • 97 Ramantani G, Boor R, Paetau R. et al. MEG versus EEG: influence of background activity on interictal spike detection. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 2006; 23: 498-508
  • 98 Besag F, Gobbi G, Aldenkamp A. et al. Psychiatric and behavioural disorders in children with epilepsy (ILAE Task Force Report): Subtle behavioural and cognitive manifestations of epilepsy in children. Epileptic Disord 2016; DOI: 10.1684/epd.2016.0816.
  • 99 Cukiert A, Rydenhag B, Harkness W. et al. Technical aspects of pediatric epilepsy surgery: Report of a multicenter, multinational web-based survey by the ILAE Task Force on Pediatric Epilepsy Surgery. Epilepsia 2016; 57: 194-200
  • 100 Hemb M, Velasco TR, Parnes MS. et al. Improved outcomes in pediatric epilepsy surgery: the UCLA experience, 1986 – 2008. Neurology 2010; 74: 1768-1775
  • 101 Gleissner U, Sassen R, Schramm J. et al. Greater functional recovery after temporal lobe epilepsy surgery in children. Brain 2005; 128: 2822-2829
  • 102 Skirrow C, Cross JH, Cormack F. et al. Long-term intellectual outcome after temporal lobe surgery in childhood. Neurology 2011; 76: 1330-1337
  • 103 Simasathien T, Vadera S, Najm I. et al. Improved outcomes with earlier surgery for intractable frontal lobe epilepsy. Ann Neurol 2013; 73: 646-654
  • 104 Liava A, Mai R, Tassi L. et al. Paediatric epilepsy surgery in the posterior cortex: a study of 62 cases. Epileptic Disord 2014; 16: 141-164
  • 105 Ramantani G, Stathi A, Brandt A. et al. Posterior cortex epilepsy surgery in childhood and adolescence: Predictors of long-term seizure outcome. Epilepsia 2017; DOI: 10.1111/epi.13654.
  • 106 Engel Jr J, Van Ness PC, Rasmussen TB. et al. Outcome with respect to epileptic seizures. In: Engel Jr J. (ed.) Surgical treatment of the epilepsies. New York: Raven Press; 1993: 609-621
  • 107 Ikonomidou C, Turski L. Antiepileptic drugs and brain development. Epilepsy Res 2010; 88: 11-22
  • 108 Kaindl AM, Asimiadou S, Manthey D. et al. Antiepileptic drugs and the developing brain. Cell Mol Life Sci CMLS 2006; 63: 399-413
  • 109 Loring DW, Meador KJ. Cognitive side effects of antiepileptic drugs in children. Neurology 2004; 62: 872-877
  • 110 Meador KJ. Cognitive outcomes and predictive factors in epilepsy. Neurology 2002; 58: S21-S26
  • 111 Boshuisen K, Arzimanoglou A, Cross JH. et al. TimeToStop study group. Timing of antiepileptic drug withdrawal and long-term seizure outcome after paediatric epilepsy surgery (TimeToStop): a retrospective observational study. Lancet Neurol 2012; 11: 784-791
  • 112 Boshuisen K, van Schooneveld MMJ, Uiterwaal CSPM. et al. TimeToStop cognitive outcome study group. Intelligence quotient improves after antiepileptic drug withdrawal following pediatric epilepsy surgery. Ann Neurol 2015; 78: 104-114