Planta Med 2017; 83(16): 1297-1308
DOI: 10.1055/s-0043-109239
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Metabolic Profiling of Hoodia, Chamomile, Terminalia Species and Evaluation of Commercial Preparations Using Ultrahigh-Performance Liquid Chromatography Quadrupole-Time-of-Flight Mass Spectrometry

Bharathi Avula
1   National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
,
Yan-Hong Wang
1   National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
,
Giorgis Isaac
2   Waters Corporation, Milford, MA, USA
,
Jimmy Yuk
2   Waters Corporation, Milford, MA, USA
,
Mark Wrona
2   Waters Corporation, Milford, MA, USA
,
Kate Yu
2   Waters Corporation, Milford, MA, USA
,
Ikhlas A. Khan
1   National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
3   Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
› Author Affiliations
Further Information

Publication History

received 27 December 2016
revised 24 March 2017

accepted 10 April 2017

Publication Date:
28 April 2017 (online)

Abstract

Ultrahigh-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-QToF-MS) profiling was used for the identification of marker compounds and generation of metabolic patterns that could be interrogated using chemometric modeling software. UHPLC-QToF-MS was used to generate comprehensive fingerprints of three botanicals (Hoodia, Terminalia, and chamomile), each having different classes of compounds. Detection of a broad range of ions was carried out in full scan mode in both positive and negative modes over the range m/z 100–1700 using high-resolution mass spectrometry. Multivariate statistical analysis was used to extract relevant chemical information from the data to easily differentiate between Terminalia species, chamomile varieties, and quality control of Hoodia products. Using nontargeted analysis, identification of 37 compounds contributed to the differences between Terminalia species, 26 flavonoids were identified to show the differences between German and Roman chamomile, and 43 pregnane glycosides were identified from Hoodia gordonii samples. The UHPLC-QToF-MS-based chemical fingerprinting with principal component analysis was able to correctly distinguish botanicals and their commercial products. This work can be used as a basis to assure the quality of botanicals and commercial products.

Supporting Information

 
  • References

  • 1 Hall RD. Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 2006; 169: 453-468
  • 2 Saito K, Dixon RA, Willmitzer L. Biotechnology in Agriculture and Forestry, 57. Plant Metabolomics. Heidelberg, Berlin, New York: Springer; 2006
  • 3 Huhman DV, Sumner LW. Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 2002; 59: 347-360
  • 4 Jander G, Norris SR, Joshi V, Fraga M, Rugg A, Yu S, Li L, Last RL. Application of a high-throughput HPLC-MS/MS assay to Arabidopsis mutant screening; evidence that threonine aldolase plays a role in seed nutritional quality. Plant J 2004; 39: 465-475
  • 5 De Vos RCH, Moco S, Lommen A, Keurentjes JJ, Bino RJ, Hall RD. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2007; 2: 778-791
  • 6 Tikunov YM, Lommen A, Vos CHR, Verhoeven HA, Bino RJ, Hall RD, Lindhout P, Bovy AG. A novel approach for non-targeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 2005; 139: 1125-1137
  • 7 Guo JM, Lu YW, Shang EX, Li T, Liu Y, Duan JA, Qian DW, Tang YP. Metabolite identification strategy of non-targeted metabolomics and its application for the identification of components in Chinese multicomponent medicine Abelmoschus manihot L. Phytomedicine 2015; 22: 579-587
  • 8 Cadahía E, Fernández de Simón B, Aranda I, Sanz M, Sánchez-Gómez D, Pinto E. Non-targeted metabolomic profile of Fagus sylvatica L. leaves using liquid chromatography with mass spectrometry and gas chromatography with mass spectrometry. Phytochem Anal 2015; 26: 171-182
  • 9 Pan Z, Li Y, Deng X, Xiao S. Non-targeted metabolomic analysis of orange (Citrus sinensis [L.] Osbeck) wild type and bud mutant fruits by direct analysis in real-time and HPLC-electrospray mass spectrometry. Metabolomics 2014; 10: 508-523
  • 10 Hu C, Shi J, Quan S, Cui B, Kleessen S, Nikoloski Z, Tohge T, Alexander D, Guo L, Lin H, Wang J, Cui X, Jun XR, Luo Q, Zhao X, Fernie AR, Zhang D. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci Rep 2014; 4: 5067
  • 11 Wang M, Avula B, Wang YH, Zhao J, Avonto C, Parcher JF, Raman V, Zweigenbaum JA, Wylie PL, Khan IA. An integrated approach utilising chemometrics and GC/MS for classification of chamomile flowers, essential oils and commercial products. Food Chem 2014; 152: 391-398
  • 12 Keurentjes JJ, Fu J, de Vos CH, Lommen A, Hall RD, Bino RJ, van der Plas LH, Jansen RC, Vreugdenhil D, Koornneef M. The genetics of plant metabolism. Nat Genet 2006; 38: 842-849
  • 13 Smith CA, Want EJ, OʼMaille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 2006; 78: 779-787
  • 14 Lommen A. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 2009; 81: 3079-3086
  • 15 Zhu J, Fan X, Cheng Y, Agarwal R, Moore CMV, Chen ST, Tong W. Chemometric analysis for identification of botanical raw materials for pharmaceutical use: a case study using Panax notoginseng . PLoS One 2014; 9: e87462
  • 16 De Vos RCH, Tikunov Y, Bovy AG, Hall RD. Flavour Metabolomics: holistic versus targeted Approaches in Flavour Research. In: Blank I, Wust M, Yeretzian C. eds. Expression of multidisciplinary Flavour Science. Proceedings of the 12th Weurman Symposium. Interlaken, Switzerland: Zürcher Hochschule für Angewandte and Institut für Chemie und Biologische Chemie; 2008: 573-580
  • 17 Scalbert A, Andres-Lacueva C, Arita M, Kroon P, Manach C, Urpi-Sarda M, Wishart D. Databases on food phytochemicals and their health-promoting effects. J Agric Food Chem 2011; 59: 4331-4348
  • 18 Alonso A, Marsal S, Julià A. Analytical methods in untargeted metabolomics: state of art in 2015. Front Bioeng Biotechnol 2015; 3: 23
  • 19 Brodsky L, Moussaieff A, Shahaf N, Aharoni A, Rogachev I. Evaluation of peak picking quality in LC-MS metabolomics data. Anal Chem 2010; 82: 9177-9187
  • 20 Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinform 2012; 7: 96-108
  • 21 Heuberger AL, Robison FM, Lyons SMA, Broeckling CD, Prenni JE. Evaluating plant immunity using mass spectrometry-based metabolomics workflows. Front Plant Sci 2014; 5: 291
  • 22 Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev 2007; 26: 51-78
  • 23 Lin L, Lin H, Zhang M, Ni B, Yin X, Qu C, Ni J. A novel method to analyze hepatotoxic components in Polygonum multiflorum using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. J Hazard Mater 2015; 299: 249-259
  • 24 Van Heerden FR, Horak MR, Maharaj VJ, Vleggaar R, Senabe JV, Gunning PJ. An appetite suppressant from Hoodia species. Phytochemistry 2007; 68: 2545-2553
  • 25 Avula B, Wang YH, Pawar RS, Shukla YJ, Smillie TJ, Khan IA. A rapid method for chemical fingerprint analysis of Hoodia species, related genera, and dietary supplements using UPLC-UV-MS. J Pharm Biomed Anal 2008; 48: 722-731
  • 26 Avula B, Wang YH, Pawar RS, Shukla YJ, Smillie TJ, Khan IA. Identification and structural characterization of steroidal glycosides in Hoodia gordonii by ion-trap tandem mass spectrometry and liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2008; 22: 2587-2596
  • 27 Kirtikar KR, Basu BD. Indian medicinal Plants. 2nd ed.. Uttranchal, India: Oriental Enterprises; 2001: 1415-1439
  • 28 Chattopadhyay RR, Bhattacharyya SK. Terminalia chebula: an update. Pharmacogn Rev 2007; 1: 151-156
  • 29 Juang LJ, Sheu SJ. Chemical identification of the sources of commercial fructus Chebulae. Phytochem Anal 2005; 16: 246-251
  • 30 Avula B, Wang YH, Wang M, Shen YH, Khan IA. Simultaneous determination and characterization of tannins and triterpene saponins from the fruits of various species of Terminalia and Phyllantus emblica using a UHPLC-UV-MS method: application to triphala. Planta Med 2013; 79: 181-188
  • 31 Han Q, Song J, Qiao C, Wong L, Xu H. Preparative isolation of hydrolysable tannins chebulagic acid and chebulinic acid from Terminalia chebula by high-speed counter-current chromatography. J Sep Sci 2006; 29: 1653-1657
  • 32 Mahajan A, Pai N. Simultaneous isolation and identification of phytoconstituents from Terminalia chebula by preparative chromatography. J Chem Pharm Res 2010; 2: 97-103
  • 33 Srivastava JK, Gupta S. Health Benefits of Chamomile. Houston: Studium Press, LLC; 2010
  • 34 Srivastava JK, Shankar E, Gupta S. Chamomile: a herbal medicine of the past with a bright future (review). Mol Med Rep 2010; 3: 895-901
  • 35 Gupta V, Mittal P, Bansal P, Khokra SL, Kaushik D. Pharmacological potential of Matricaria recutita – a review. Int J Pharm Sci Drug Res 2010; 2: 12-16
  • 36 Gruenwald J, Brendler T, Jaenicke C. PDR for herbal Medicines. 3rd ed.. Matricaria Chamomilla (Chamomile). Montvale, NJ: Medical Economics Company, Inc.; 1998: 961-962
  • 37 Merfort I, Heilmann J, Hagedorn-Leweke U, Lippold BC. In vivo skin penetration studies of chamomile flavones. Pharmazie 1994; 49: 509-511
  • 38 Barnes J, Anderson LA, Phillipson JD. Herbal Medicines. 2nd ed.. London: Pharmaceutical Press; 2002: 130-131
  • 39 Avula B, Wang YH, Wang M, Avonto C, Zhao J, Smillie TJ, Rua D, Khan IA. Quantitative determination of phenolic compounds by UHPLC-UV-MS and use of partial least-square discriminant analysis to differentiate chemo-types of chamomile/chrysanthemum flower heads. J Pharm Biomed Anal 2014; 88: 278-288
  • 40 Power F, Browning J. The constituents of the flowers of Matricaria chamomilla . J Chem Soc 1914; 105: 2280-2291
  • 41 Lang W, Schwandt K. Assessment of the glycoside content of chamomile. Dtsch Apoth Ztg 1957; 97: 149-151
  • 42 Franke R, Schilcher H. Chamomile industrial profiles. Boca Rayton: CRC Press; 2005
  • 43 Atoui AK, Mansouri A, Boskou G, Kefalas P. Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chem 2005; 89: 27-36
  • 44 Sun H. A universal molecular descriptor system for prediction of logP, logS, logBB, and absorption. J Chem Inf Comput Sci 2004; 44: 748-757