Klin Monbl Augenheilkd 2019; 236(05): 672-681
DOI: 10.1055/s-0043-109891
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Autofluoreszenz des humanen retinalen Pigmentepithels in der normalen Alterung und bei altersbedingter Makuladegeneration: Histologie und Klinik

Autofluorescence of the Human Retinal Pigment Epithelium in Normal Aging and in Age-Related Macular Degeneration: Histology and Clinical Correlation
Thomas Ach
Augenklinik und Poliklinik, Universitätsklinikum Würzburg
,
Katharina Bermond
Augenklinik und Poliklinik, Universitätsklinikum Würzburg
› Author Affiliations
Further Information

Publication History

eingereicht 31 December 2016

akzeptiert 14 February 2017

Publication Date:
06 July 2017 (online)

Zusammenfassung

Fundusautofluoreszenz(FAF)-Aufnahmen zählen seit beinahe 2 Jahrzehnten zur Routinediagnostik des menschlichen Augenhintergrunds. Die stetigen Weiterentwicklungen der Aufnahmetechniken ermöglichen heute eine sichere, nicht invasive, einfach durchführbare und reproduzierbare Darstellung des Augenhintergrunds. Die zugrunde liegende Technik macht sich die autofluoreszierenden Eigenschaften von Geweben, insbesondere des retinalen Pigmentepithels (RPE) und dessen Fluorophore, zunutze. Dadurch können FAF-Aufnahmen in hervorragender Weise Phänomene der normalen Alterung sowie krankheitsbedingte Veränderungen des Augenhintergrunds aufzeigen, aber auch Informationen zu Krankheitsverlauf und Therapiekontrolle liefern. In dieser Übersichtsarbeit sollen nach einer kurzen Einführung in die Basis der Fundusautofluoreszenz neueste grundlagenwissenschaftliche Kenntnisse zur Histologie im Hinblick auf altersbedingte und pathologische Veränderungen des RPE zusammengefasst werden, um so eine bessere Interpretation von FAF-Aufnahmen zu ermöglichen. Der Darstellung altersbedingter Veränderungen werden hierbei die pathologischen Veränderungen im Rahmen einer altersbedingten Makuladegeneration sowohl klinisch als auch auf histologischer Ebene gegenübergestellt.

Abstract

Autofluorescence images of the fundus have been part of the routine diagnostics of the human eye for almost two decades. Further development of imaging techniques makes fundus autofluorescence (FAF) imaging a safe, non-invasive, easy-to-perform and reproducible diagnostic tool. FAF uses the autofluorescent properties of tissues, in particular the retinal pigment epithelium (RPE) and its fluorophores. FAF images display phenomena of normal aging as well as disease-related changes of the fundus, but also can be used for monitoring retinal diseases and therapy. After a short introduction into the basics of FAF, the results of the latest histology studies regarding age-related and pathological changes of the human RPE will be summarized for a better understanding and interpretation of FAF images. The normal age-related changes of the RPE are contrasted with the pathological changes in age-related macular degeneration, both clinically and histologically.

 
  • Literatur

  • 1 Delori FC, Dorey CK, Staurenghi G. et al. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 1995; 36: 718-729
  • 2 Delori FC, Goger DG, Dorey CK. Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci 2001; 42: 1855-1866
  • 3 Von Ruckmann A, Fitzke FW, Bird AC. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 1995; 79: 407-412
  • 4 Spaide R. Autofluorescence from the outer retina and subretinal space: hypothesis and review. Retina 2008; 28: 5-35
  • 5 Sparrow JR, Gregory-Roberts E, Yamamoto K. et al. The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 2012; 31: 121-135
  • 6 Tang PH, Kono M, Koutalos Y. et al. New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res 2013; 32: 48-63
  • 7 Katz ML, Robison jr. WG. What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. Arch Gerontol Geriatr 2002; 34: 169-184
  • 8 Katz ML, Gao CL, Rice LM. Formation of lipofuscin-like fluorophores by reaction of retinal with photoreceptor outer segments and liposomes. Mech Ageing Dev 1996; 92: 159-174
  • 9 Ng KP, Gugiu B, Renganathan K. et al. Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics 2008; 7: 1397-1405
  • 10 Feeney L. Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest Ophthalmol Vis Sci 1978; 17: 583-600
  • 11 Feeney-Burns L, Hilderbrand ES, Eldridge S. Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci 1984; 25: 195-200
  • 12 Biesemeier A, Schraermeyer U, Eibl O. Chemical composition of melanosomes, lipofuscin and melanolipofuscin granules of human RPE tissues. Exp Eye Res 2011; 93: 29-39
  • 13 Kim IT, Choi JB. Melanosomes of retinal pigment epithelium – distribution, shape, and acid phosphatase activity. Korean J Ophthalmol 1998; 12: 85-91
  • 14 Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci 2006; 47: 3556-3564
  • 15 Kellner U, Kellner S, Weber BH. et al. Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa. Eye 2009; 23: 1349-1359
  • 16 Boulton M, Docchio F, Dayhaw-Barker P. et al. Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Vision Res 1990; 30: 1291-1303
  • 17 Pollreisz A, Messinger JD, Sloan KR. et al. Visualizing retinal pigment epithelium (RPE) melanosomes, lipofuscin, melanolipofuscin (M, L, ML) in human eyes of different ages using 3-dimensional serial block face scanning electron microscopy (3D SBFSEM). Invest Ophthalmol Vis Sci 2016; 57
  • 18 Müller K, Heintzmann R, Hillenkamp J. et al. Intrazelluläre Autofluoreszenzspektren humaner retinaler Pigmentepithel-Zellen ex vivo beim normalen Altern und bei altersbedingter Makuladegeneration. Ophthalmologe 2016; DOG Abstracts.
  • 19 Schmitz-Valckenberg S, Holz FG, Bird AC. et al. Fundus autofluorescence imaging: review and perspectives. Retina 2008; 28: 385-409
  • 20 Spaide RF. Autofluorescence imaging with the fundus camera. In: Holz FG, Schmitz-Valckenberg S, Spaide RF, Bird AC. eds. Atlas of Fundus Autofluorescence Imaging. Berlin, Heidelberg: Springer; 2007: 49-53
  • 21 Delori F, Greenberg JP, Woods RL. et al. Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope. Invest Ophthalmol Vis Sci 2011; 52: 9379-9390
  • 22 Greenberg JP, Duncker T, Woods RL. et al. Quantitative fundus autofluorescence in healthy eyes. Invest Ophthalmol Vis Sci 2013; 54: 5684-5693
  • 23 Delori FC. Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus. Appl Opt 1994; 33: 7439-7452
  • 24 Polyak SL. The Retina: the Anatomy and the Histology of the Retina in Man, Ape, and Monkey, including the Consideration of visual Functions, the History of physiological Optics, and the histological Laboratory Technique. Chicago: University of Chicago; 1941
  • 25 Curcio CA, Sloan KR, Kalina RE. et al. Human photoreceptor topography. J Comp Neurol 1990; 292: 497-523
  • 26 Ach T, Huisingh C, McGwin jr. G. et al. Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2014; 55: 4832-4841
  • 27 Ach T, Tolstik E, Messinger JD. et al. Lipofuscin redistribution and loss accompanied by cytoskeletal stress in retinal pigment epithelium of eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 2015; 56: 3242-3252
  • 28 Starnes AC, Huisingh C, McGwin jr. G. et al. Multi-nucleate retinal pigment epithelium cells of the human macula exhibit a characteristic and highly specific distribution. Vis Neurosci 2016; 33: e001
  • 29 Feeney-Burns L, Berman ER, Rothman H. Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 1980; 90: 783-791
  • 30 Delori FC, Fleckner MR, Goger DG. et al. Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci 2000; 41: 496-504
  • 31 Bindewald A, Bird AC, Dandekar SS. et al. Classification of fundus autofluorescence patterns in early age-related macular disease. Invest Ophthalmol Vis Sci 2005; 46: 3309-3314
  • 32 Gliem M, Müller PL, Finger RP. et al. Quantitative fundus autofluorescence in early and intermediate age-related macular degeneration. JAMA Ophthalmol 2016; 134: 817-824
  • 33 Brar M, Kozak I, Cheng L. et al. Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy. Am J Ophthalmol 2009; 148: 439-444
  • 34 Bindewald A, Schmitz-Valckenberg S, Jorzik JJ. et al. Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration. Br J Ophthalmol 2005; 89: 874-878
  • 35 Holz FG, Bellmann C, Margaritidis M. et al. Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 1999; 237: 145-152
  • 36 Holz FG, Bindewald-Wittich A, Fleckenstein M. et al. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol 2007; 143: 463-472
  • 37 Zanzottera EC, Ach T, Huisingh C. et al. Visualizing retinal pigment epithelium phenotypes in the transition to atrophy in neovascular age-related macular degeneration. Retina 2016; 36 (Suppl. 01) S26-S39
  • 38 Abdelfattah NS, Al-Sheikh M, Pitetta S. et al. Macular atrophy in neovascular age-related macular degeneration with monthly versus treat-and-extend ranibizumab: Findings from the TREX-AMD trial. Ophthalmology 2017; 124: 215-223
  • 39 Zanzottera EC, Messinger JD, Ach T. et al. Subducted and melanotic cells in advanced age-related macular degeneration are derived from retinal pigment epithelium. Invest Ophthalmol Vis Sci 2015; 56: 3269-3278
  • 40 Zanzottera EC, Messinger JD, Ach T. et al. The project MACULA retinal pigment epithelium grading system for histology and optical coherence tomography in age-related macular degeneration. Invest Ophthalmol Vis Sci 2015; 56: 3253-3268
  • 41 Zanzottera EC, Ach T, Huisingh C. et al. Visualizing retinal pigment epithelium phenotypes in the transition to geographic atrophy in age-related macular degeneration. Retina 2016; 36 (Suppl. 01) S12-S25
  • 42 Sarks JP, Sarks SH, Killingsworth MC. Evolution of geographic atrophy of the retinal pigment epithelium. Eye 1988; 2: 552-577
  • 43 Rudolf M, Vogt SD, Curcio CA. et al. Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy. Ophthalmology 2013; 120: 821-828
  • 44 Holz FG, Bellman C, Staudt S. et al. Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 2001; 42: 1051-1056
  • 45 Sayegh RG, Simader C, Scheschy U. et al. A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy. Ophthalmology 2011; 118: 1844-1851
  • 46 Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 2005; 80: 595-606
  • 47 Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239-257
  • 48 Von Ruckmann A, Fitzke FW, Bird AC. Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthalmol Vis Sci 1997; 38: 478-486
  • 49 Dunaief JL, Dentchev T, Ying G. et al. The role of apoptosis in age-related macular degeneration. Arch Ophthal 2002; 120: 1435-1442
  • 50 Green WR. Key S3rd. Senile macular degeneration: a histopathologic study. Trans Am Ophthalmol Soc 1977; 75: 180
  • 51 Ooto S, Vongkulsiri S, Sato T. et al. Outer retinal corrugations in age-related macular degeneration. JAMA Ophthalmol 2014; 132: 806-813