Subscribe to RSS
DOI: 10.1055/s-0043-115379
Training der oberen Extremitäten mit einem Roboterball bei Schlaganfallpatienten
Training of Upper Extremities with a Robotic Ball in Stroke PatientsPublication History
Publication Date:
20 September 2017 (online)
Zusammenfassung
Hintergrund Technik-gestützte Bewegungstherapie kann dazu beitragen, die charakteristischen Symptome der oberen Extremitäten infolge eines Schlaganfalls durch die Fähigkeit der neuronalen Reorganisation zu rehabilitieren. Der Roboterball „Sphero 2.0“ wurde als potenziell geeignetes innovatives Exergaming-Instrument festgestellt und zum ersten Mal in der Neurorehabilitation angewendet.
Ziel der Arbeit Das entwickelte Therapiekonzept mit dem Roboterball soll erprobt und mögliche Effekte auf motorische Parameter geprüft werden. Patientenangaben sollen dazu beitragen, den Einsatz in der Rehabilitation zu testen sowie Auswirkungen einer mehrwöchigen Anwendung zu überprüfen. Außerdem wird die technische Eignung des Roboterballs bewertet.
Methoden Zwölf Schlaganfallpatienten (62,3 ± 11,8 Jahre, 170,8 ± 10,9 cm, 82,5 ± 16,6 kg, 6,37 ± 5,53 Monate post-stroke) trainierten an 24 Einheiten in 12 Wochen zweimal pro Woche für 45 min mit dem Roboterball. Bisherige Therapiemaßnahmen wurden ergänzt. Vor und nach der Intervention wurden Greifkraft, unilaterale Geschicklichkeit, Krankheitsempfinden, kognitiver Status sowie Technikaffinität getestet.
Ergebnisse 10 Patienten konnten die Intervention abschließen und erzielten signifikante Verbesserungen der Greifkraft (p = 0,007, d = 0,51) und der unilateralen Geschicklichkeit (p = 0,002, d = 0,44) bei reduziert wahrgenommenen Krankheitsbeschwerden (p = 0,002, d = −1,12). Der Roboterball wurde mit 92,3 ± 2,5 von maximal 100 Punkten als exzellent bewertet.
Diskussion Sehr stark und schwach betroffene Patienten scheinen von den allgemein positiven Ergebnissen weniger zu profitieren als moderat eingeschränkte. Konkrete Verbesserungen im Alltag tragen zur hohen Motivation für das Training mit dem Roboterball bei. Die Therapieinhalte können variabel gestaltet und bei unterschiedlich stark betroffenen Anwendern erfolgreich angewendet werden. Die Ergebnisse sollten im nächsten Schritt mit weiteren Patienten im Crossover-Design überprüft werden.
Abstract
Background Technology-supported therapy can contribute to rehabilitate the distinctive symptoms of upper extremities due to stroke because of the ability of neuronal reorganization. The robotic ball “Sphero 2.0” was ascertained as a possible applicable innovative therapeutic exergaming tool and was used within neurorehabilitation for the first time.
Objective The therapy-concept with the robotic ball is to be put to the test and possible effects to motor parameters are assessed. The patients’ statements are to contribute to test the implementation within the rehabilitation as well as to check ramifications of a multiple week execution. Furthermore the technical applicability will be rated.
Methods Twelve stroke patients (62,3 ± 11,8 years, 170,8 ± 10,9 cm, 82,5 ± 16,6 kg, 6,37 ± 5,53 months post-stroke) trained in 24 × 45 min sessions within 12 weeks, two times a week. Regular therapy was complemented. Pre and post intervention the grip strength, unilateral dexterity, perceived disease awareness and impairment, cognitive status and technical affinity was tested.
Results Ten patients were able to complete the intervention and achieved significant improvements of grip strength (p = 0.007, d = 0.51) and unilateral dexterity (p = 0.002, d = 0.44) with downscaled perceived disease awareness and impairment (p = 0.002, d = −1.12). The robotic ball was rated excellent with 92.3 ± 2.5 out of 100 points maximum.
Conclusions Strong and slightly impaired patients seem to benefit less from the generally positive results than moderate affected stroke patients. Specific improvements in dealing with activities of daily living contributed to a high motivation for the robotic ball training. The training contents can be adapted variably in order to be applied by heterogeneous impaired users. In a following crossover-design study the results should be checked with more patients.
-
Literatur
- 1 Wolf SL, Winstein CJ, Miller JP. et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 2006; 296: 2095-2104
- 2 Schubert F, Lalouschek W. Schlaganfall. In: Lehrner J, Pusswald G, Fertl E. et al., Eds. Klinische Neuropsychologie. Grundlagen – Diagnostik – Rehabilitation. Wien: Springer; 2006: 345-356
- 3 Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol 2009; 8: 741-754
- 4 Hauptmann B. Von der Theorie zur Praxis: Grundlagen prozedualen und motorischen Lernens. In: Dettmers C, Bülau P, Weiller C. Eds. Schlaganfall Rehabilitation. Bad Honnef: Hippocampus Verlag; 2007: 25-52
- 5 Wulf G. Motorisches Lernen: Einflussgrößen und ihre Optimierung. In: Dettmers C, Bülau P, Weiller C. Eds. Schlaganfall Rehabilitation. Bad Honnef: Hippocampus Verlag; 2007: 3-24
- 6 Nadeau SE. A paradigm shift in neurorehabilitation. Lancet Neurol 2002; 1: 126-130
- 7 Taub E, Uswatte G, Elbert T. New treatments in neurorehabiliation founded on basic research. Nat Rev Neurosci 2002; 3: 228-236
- 8 Deutsche Gesellschaft für Neurorehabilitation (DGNR). S2e-Leitlinien der DGNR zur motorischen Rehabilitation der oberen Extremität nach Schlaganfall. Neurologie & Rehabilitation 2009; 15: 71-160
- 9 Hebb DO. The organization of behavior: A neuropsychological theory. New York: Wiley & Sons; 1949
- 10 Johansson BB. Brain plasticity and stroke rehabilitation. Stroke 2000; 31: 223-230
- 11 Liepert J, Tegenthoff M, Malin J-P. Changes of cortical motor area size during immobilization. Electroencephalogr Clin Neurophysiol 1995; 97: 382-386
- 12 Kopp B, Kunkel A, Münickel W. et al. Plasticity in the motor system related to therapy-induced improvement of movement after stroke. Neuroreport 1999; 10: 807-810
- 13 Liepert J, Bauder H, Miltner WH. et al. Treatment-induced cortical reorganization after stroke in humans. Stroke 2000; 31: 1210-1216
- 14 Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog Neurobiol 2004; 73: 61-72
- 15 Crosbie JH, Lennon S, Basford JR. et al. Virtual reality in stroke rehabilitation: still more virtual than real. Disabil Rehabil 2007; 29: 1139-1146 discussion 1147–1152
- 16 Laver KE, George S, Thomas S. et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 2015; 2: 1-110
- 17 Lohse KR, Hilderman CG, Cheung KL. et al. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One 2014; 9: e93318
- 18 Loureiro RC, Harwin WS, Nagai K. et al. Advances in upper limb stroke rehabilitation: a technology push. Med Biol Eng Comput 2011; 49: 1103-1118
- 19 Prashun P, Hadley G, Gatzidis C. et al. Investigating the trend of virtual reality-based stroke rehabilitation systems. 14th International Conference Information Visualisation. 2010
- 20 Rahman S, Shaheen AA. Virtual reality use in motor rehabilitation of neurological disorders: a systematic review. Middle East J Sci Res 2011; 7: 63-70
- 21 Saposnik G, Levin M. Outcome Research Canada (SORCan) Working Group. Virtual reality in stroke rehabilitation a meta-analysis and implications for clinicians. Stroke 2011; 42: 1380-1386
- 22 Audebert HJ, Handschu R. Telemedizin beim Schlaganfall. Nervenheilkunde 2009; 28: 103-107
- 23 Laver KE, Schoene D, Crotty M. et al. Telerehabilitation services for stroke. The Cochrane Library 2013; 12: 1-48
- 24 Nirme J, Rubio B, Duff A. et al. At home motor rehabilitation in the chronic phase of stroke using the rehabilitation gaming system. In: Pons JL, Torricelli D, Pajaro M. Eds. Converging Clinical and Engineering Research on Neurorehabilitation. (Biosystems & Biorobotics). Heidelberg – New York – Dordrecht – London: Springer; 2013: 931-935
- 25 Alankus G, Lazar A, May M. et al. Towards customizable games for stroke rehabilitation. CHI 2010: Therapy and Rehabilitation. Proceedings of the 28th International Conference on Human Factors in Computing Systems 2010: 2113-2122
- 26 Burke J, McNeill M, Charles D. et al. Serious games for upper limb rehabilitation following stroke. VS-GAMES ’09. Conference in Games and Virtual Worlds for Serious Applications 2009: 103-110
- 27 Ferreira C, Guimarães V, Santos A. et al. Gamification of stroke rehabilitation exercises using a smartphone. Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare 2014: 282-285
- 28 Göbel S, Hardy S, Steinmetz R. et al. Serious Games zur Prävention und Rehabilitation. 4. Deutscher AAL-Kongress. 2011
- 29 Anguita D, Ghio A, Oneto L. et al. Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Bravo J, Hervás D, Rodriguez M. Eds. Ambient Assisted Living and Home Care. 4th International Workshop, IWAAL 2012, Vitoria-Gasteiz, Spain, December 3–5, 2012, Proceedings (Lecture Notes in Computer Science). Heidelberg – Dordrecht – London – New York: Springer; 2012: 216-223
- 30 Banos O, Damas M, Pomares H. et al. Daily living activity recognition based on statistical feature quality group selection. Expert Syst Applicat 2012; 39: 8013-8021
- 31 Brown M, Deitch T, O’Conor L. Activity classification with smartphone data. STANFORD CS 229. 2013: 1-5
- 32 Su X, Tong H, Ji P. Activity recognition with smartphone sensors. Tsinghua Sci Technol 2014; 19: 235-249
- 33 Goble DJ, Cone BL, Fling BW. Using the Wii Fit as a tool for balance assessment and neurorehabilitation: the first half decade of “Wii-search?”. J Neuroeng Rehabil 2014; 11: 3-11
- 34 Mousavi Hondori M, Khademi M. A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J Med Eng 2014; 2014: 1-17
- 35 Webster D, Celik O. Systematic review of Kinect applications in elderly care and stroke rehabilitation. J Neuroeng Rehabil 2014; 11: 108
- 36 Nitzsche N, Pawski B, Schulz H. Physiologische Beanspruchung und deren Reliabilität von Exergaming motivierten Kraftübungen. Dtsch Z Sportmed 2012; 11: 319-323
- 37 Neuendorf T, Zschaebitz D, Nitzsche N. et al. Therapeutischer Effekt Sensor-gestützter Rehabilitationssysteme bei Schlaganfallpatienten. Akt Neurol 2016; 43: 24-31
- 38 Neuendorf T, Zschaebitz D, Nitzsche N. et al. Neurorehabilitation mit einem Roboterball – ein geeignetes Therapiekonzept?. Neuroreha 2017; 9: 41-44
- 39 Veerbeek JM, van Wegen E, van Peppen R. et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One 2014; 9: e87987
- 40 Azab M, Al-Jarrah M, Nazzal M. et al. Effectiveness of constraint-induced movement therapy (CIMT) as home-based therapy on Barthel Index in patients with chronic stroke. Top Stroke Rehabil 2009; 16: 207-211
- 41 Dromerick AW, Edwards DF, Hahn M. et al. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke?. Stroke 2000; 31: 2984-2988
- 42 Hakkennes S, Keating JL. Constraint-induced movement therapy following stroke: a systematic review of randomised controlled trials. Aust J Physiother 2005; 51: 221-231
- 43 Sirtori V, Corbetta D, Moja L. et al. Constraint-induced movement therapy for upper extremities in stroke patients. The Cochrane Library 2009; 1-63
- 44 Wolf SL, Thompson PA, Winstein CJ. et al. The EXCITE stroke trial comparing early and delayed constraint-induced movement therapy. Stroke 2010; 41: 2309-2315
- 45 Wolf SL, Winstein CJ, Miller JP. et al. The EXCITE trial: Retention of improved upper extremity function among stroke survivors receiving CI movement therapy. Lancet Neurol 2008; 7: 33
- 46 Cohen J. Statistical Power Analysis for the Behavioural Sciences. 2nd. ed. Mahwah, NJ: Lawrence Erlbaum Associates; 1988
- 47 Sorensen AA, Howard D, Tan WH. et al. Minimal clinically important differences of 3 patient-rated outcomes instruments. J Hand Surg Am 2013; 38: 641-649
- 48 Colomer C, Llorens R, Noé E. et al. Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J Neuroeng Rehabil 2016; 13: 1
- 49 Saposnik G, Cohen LG, Mamdani M. et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol 2016; 15: 1019-1027
- 50 Flynn S, Palma P, Bender A. Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: a case report. J Neurol Phys Ther 2007; 31: 180-189
- 51 Sin H, Lee G. Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. Am J Phys Med Rehabil 2013; 92: 871-880
- 52 Bower KJ, Louie J, Landesrocha Y. et al. Clinical feasibility of interactive motion-controlled games for stroke rehabilitation. J Neuroeng Rehabil 2015; 12: 1
- 53 Carabeo CGG, Dalida CMM, Padilla EMZ. et al. Stroke patient rehabilitation a pilot study of an android-based game. Simulation & Gaming 2014; 45: 151-166
- 54 Rand D, Schejter-Margalit T, Dudkiewicz I. et al. The use of the iPad for poststroke hand rehabilitation; a pilot study. Virtual Rehabilitation (ICVR), 2013 International Conference 2013; 109-113
- 55 Ma M, Bechkoum K. Serious games for movement therapy after stroke. Systems, Man and Cybernetics, 2008. SMC 2008, IEEE International Conference. 2008: 1872-1877
- 56 Bangor A, Kortum P, Miller J. Determining what individual SUS scores mean: Adding an adjective rating scale. J Usability Stud 2009; 4: 114-123
- 57 Nijenhuis SM, Prange GB, Amirabdollahian F. et al. Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke. J Neuroeng Rehabil 2015; 12: 1
- 58 Sungkarat S, Fisher BE, Kovindha A. Efficacy of an insole shoe wedge and augmented pressure sensor for gait training in individuals with stroke: a randomized controlled trial. Clin Rehabil 2011; 25: 360-369
- 59 Timmermans AA, Seelen HA, Geers RP. et al. Sensor-based arm skill training in chronic stroke patients: results on treatment outcome, patient motivation, and system usability. IEEE Trans Neural Syst Rehabil Eng 2010; 18: 284-292
- 60 Joo LY, Yin TS, Xu D. et al. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. J Rehabil Med 2010; 42: 437-441
- 61 Martel MRF, Colussi EL, Marchi ACBD. Effects of a video game-based intervention on the attention and functional independence of older adults after cerebrovascular accident. Fisioterapia e Pesquisa 2016; 23: 52-58
- 62 Shin J-H, Ryu H, Jang SH. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. J Neuroeng Rehabil 2014; 11: 32
- 63 Rand D, Zeilig G, Kizony R. Rehab-let: touchscreen tablet for self-training impaired dexterity post stroke: study protocol for a pilot randomized controlled trial. Trials 2015; 16: 1
- 64 Cameirão MS, iBadia SB, Duarte E. et al. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke 2012; 43: 2720-2728
- 65 Novak D, Nagle A, Keller U. et al. Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. J Neuroeng Rehabil 2014; 11: 1
- 66 Piron L, Turolla A, Agostini M. et al. Motor learning principles for rehabilitation: a pilot randomized controlled study in poststroke patients. Neurorehabil Neural Repair 2010; 24: 501-508