Aktuelle Neurologie 2017; 44(08): 555-560
DOI: 10.1055/s-0043-116378
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Roboter- und gerätegestützte Rehabilitation der oberen Extremität

Robot-Assisted and Device-Based Rehabilitation of the Upper Extremity
Michael Sailer
1   MEDIAN Klinik NRZ Magdeburg & MEDIAN Klinik Flechtingen
2   An-Institut für Neurorehabilitation, MEDIAN Klinik NRZ Magdeburg/Otto-von-Guericke Universität Magdeburg
,
Catherine Sweeney-Reed
3   Universitätsklinik für Neurologie – Neurokybernetik und Rehabilitation, Otto-von-Guericke-Universität Magdeburg
,
Juliane Lamprecht
2   An-Institut für Neurorehabilitation, MEDIAN Klinik NRZ Magdeburg/Otto-von-Guericke Universität Magdeburg
› Author Affiliations
Further Information

Publication History

Publication Date:
09 October 2017 (online)

Zusammenfassung

Eine standardisierte Therapie der oberen Extremität bei Patienten mit einer Störung des zentralen Nervensystems (ZNS) liegt bisher nicht vor. In der letzten Dekade hat die roboter- und gerätegestützte Therapie die Behandlung der motorischen Funktionsstörungen der oberen Extremität nach Schlaganfall in der Neurorehabilitation deutlich beeinflusst. Die vorliegende Arbeit gibt einen Überblick zu den technischen Grundlagen und zur Differenzierung der verschiedenen Gerätetypen. Unter Einbeziehung ausgewählter Studien wird die Praxis der roboter- und gerätegestützten Rehabilitation der oberen Extremität dargestellt. Die Effektivität der gerätegestützten Therapie der oberen Extremität ist, im Vergleich zu einer gleichwertig intensiven konventionellen Therapie, weiterhin diskutabel, nicht zuletzt auch aufgrund der recht heterogenen Studienlage. Dennoch weisen die Entwicklung und der Einsatz roboter- und gerätegestützter Therapieformen der oberen Extremität in eine vielversprechende Zukunft. Sie können das Personal entlasten und stellen aktuell eine sinnvolle Ergänzung zur konventionellen Therapie dar.

Abstract

Neurorehabilitation of patients with long-term upper limb motor dysfunction due to central nervous system damage still lacks adequate standardization. During the last decade, robot- and device-assisted rehabilitation has become more feasible for the treatment of the functional disorders of the upper limb after stroke. Here we present an overview on technological aspects and differential use of devices for upper limb rehabilitation and review relevant clinical studies. We also discuss the potential for standardized evaluation in relation to limited health care resources. While the effectiveness of device-assisted versus conventional therapy is still a matter of debate, largely due to the heterogeneous design of the available clinical studies, we strongly believe that technological progress and a better understanding of the timing, intensity and quality of upper limb rehabilitation will enable a central role for robot- and device-assisted rehabilitation in the next decade.

 
  • Literatur

  • 1 Persson HC, Parziali M, Danielsson A. et al. Outcome and upper extremity function within 72 hours after first occasion of stroke in an unselected population at a stroke unit: a part of the SALGOT study. BMC Neurol 2012; 12: 162
  • 2 Nichols-Larsen DS, Clark PC, Zeringue A. et al. Factors influencing stroke survivorsʼ quality of life during subacute recovery. Stroke 2005; 36: 1480-1484
  • 3 Kwakkel G, Kollen BJ, van der Grond J. et al. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 2003; 34: 2181-2186
  • 4 Platz T, Roschka S. Rehabilitative Therapie bei Armparese nach Schlaganfall. Neurol Rehabil 2009; 15: 81-106
  • 5 Mehrholz J, Pohl M, Platz T. et al. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke (Update). Cochrane Database Syst Rev 2015; CD006876. DOI: 10.1002/14651858.CD006876.pub4 .
  • 6 Mehrholz J, Hädrich A, Platz T. et al. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 2012; CD006876. DOI: 10.1002/14651858.CD006876.pub3 .
  • 7 Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EEH. et al. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair 2017; 31: 107-121
  • 8 Maciejasz P, Eschweiler J, Gerlach-Hahn K. et al. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil 2014; 11: 3
  • 9 Volpe BT, Krebs HI, Hogan N. et al. A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 2000; 54: 1938-1944
  • 10 Lum PS, Burgar CG, Shor PC. et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 2002; 83: 952-959
  • 11 Hesse S, Kuhlmann H, Wilk J. et al. A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: a case series in chronic and acute stroke patients. J Neuroeng Rehabil 2008; 5: 21
  • 12 Goršič M, Cikajlo I, Novak D. Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person. J Neuroeng Rehabil 2017; 14: 23
  • 13 Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil 2009; 6: 20
  • 14 van Dokkum LEH, Ward T, Laffont I. Brain computer interfaces for neurorehabilitation – its current status as a rehabilitation strategy post-stroke. Ann Phys Rehabil Med 2015; 58: 3-8
  • 15 Barker RN, Brauer SG, Carson RG. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial. Stroke 2008; 39: 1800-1807
  • 16 Lo AC, Guarino PD, Richards LG. et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 2010; 362: 1772-1783
  • 17 Hesse S, Werner C, Pohl M. et al. Computerized arm training improves the motor control of the severely affected arm after stroke. A single-blinded randomized trial in two centres. Stroke 2005; 36: 1960-1966
  • 18 Brokaw EB, Nichols D, Holley RJ. et al. Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy. Neurorehabil Neural Repair 2014; 28: 367-376
  • 19 Sale P, Mazzoleni S, Lombardi V. et al. Recovery of hand function with robot-assisted therapy in acute stroke patients: a randomized-controlled trial. Int J Rehabil Res 2014; 37: 236-242
  • 20 Shirota C, Jansa J, Diaz J. et al. On the assessment of coordination between upper extremities. J Neuroeng Rehabil 2016; 13: 80
  • 21 Hsieh Y-w, Liing R-j, Lin K-c. et al. Sequencing bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke. J Neuroeng Rehabil 2016; 13: 31
  • 22 Hall AM, Ferreira PH, Maher CG. The influence of the therapist-patient relationship on treatment outcome in physical rehabilitation: a systematic review. Phys Ther 2010; 90: 1099-1110