Subscribe to RSS
DOI: 10.1055/s-0043-118596
Vergleich des Regenerativen Zytokinprofils von Adipose Derived Stromal Cells (ASCs) Gewonnen Mittels Abdominoplastik, Suction Assisted Liposuction (SAL) und Ultrasound Assisted Liposuction (UAL)
Comparison of the regenerative cytokine profile of adipose-derived stromal cells (ASCs) harvested via abdominoplasty, suction-assisted liposuction (SAL) and ultrasound-assisted liposuction (UAL)Publication History
04/24/2017
08/07/2017
Publication Date:
19 April 2018 (online)
Zusammenfassung
Einleitung Mesenchymale Stromazellen sind aufgrund ihres regenerativen Potentials schon in zahlreichen Fachgebieten der Medizin im klinischen Einsatz. In der Plastischen Chirurgie stehen vor allem Fettstammzellen (Adipose derived stromal cells = ASCs) aus Lipoasopirat im Mittelpunkt der rezenten Forschung. Die Fähigkeit zur Ausschüttung von regenerativen Zytokinen ist der Schlüsselmechanismus im therapeutischen Einsatz von ASCs. Es sind zurzeit eine Vielzahl an Methoden und Geräten zur Lipoaspiratgewinnung in der klinischen Anwendung. Bei den meisten dieser Geräte sind die Auswirkungen auf die regenerativen Eigenschaften der ASCs noch weitgehend ungeklärt. Ziel dieser Studie ist der Vergleich der Expression von wesentlichen regenerativen Zytokinen von ASCs, gewonnen mittels dreier Standardverfahren der Plastischen Chirurgie: Abdominoplastik, Suction assisted Liposuction (SAL) und Ultrasound assisted Liposuction (UAL).
Patienten und Methoden UAL und SAL Lipoaspirate wurden jeweils von 3 gesunden weiblichen Probanden gewonnen, be vor eine Abdominoplastik an denselben Patienten durchgeführt wurde. ASCs wurden aus UAL und SAL Lipoaspiraten sowie aus den Abdominoplastikresektaten isoliert und die RNA-Expression von wichtigen regenerativen Zytokinen (HGF (hepatocyte growth factor), FGF-2 (basic fibroblast growth factor), MCP-1 (monocyte chemotactic protein 1), SDF-1 (stromal cell-derived factor 1) und VEGF (vascular endothelial growth factor) verglichen.
Resultate Es zeigte sich kein Unterschied hinsichtlich der Expression von HGF, FGF-2, SDF-1 und VEGF zwischen den einzelnen Proben, jedoch eine signifikant erhöhte Expression von MCP-1 in ASCs gewonnen aus UAL-Lipoaspirat.
Conclusio UAL stellt bezüglich Einfluss auf das ASC Expressionsprofil von Schlüsselzytokinen der Gewebserneuerung eine mit SAL zumindest vergleichbare Methode dar. Sowohl UAL als auch SAL Lipoaspirate sind geeignet zur Gewinnung von funktionellen ASCs vergleichbar mit minimal manipulierten Zellen aus Abdominoplastikresektaten.
Abstract
Introduction Mesenchymal stem cells are already used in numerous areas of medicine. In the field of plastic surgery, the main focus of recent research has been to utilise adipose-derived stromal cells (ASCs), mainly harvested via liposuction. The ability to release regenerative cytokines is supposed to be the key mechanism for the therapeutic efficacy of ASCs. There are currently a variety of methods and devices in clinical use for harvesting lipoaspirate and consequently ASCs. For most of these devices, the effect on the regenerative cytokine profile of ASCs is unknown. The aim of this study is to compare the expression of key regenerative cytokines of ASCs derived by three standard procedures of plastic surgery: abdominoplasty, suction-assisted liposuction (SAL) and ultrasound-assisted liposuction (UAL).
Patients and methods UAL and SAL lipoaspirates were obtained from 3 healthy female volunteers before abdominoplasty was performed in the same patients. ASCs were isolated from UAL and SAL lipoaspirates as well as from abdominoplasty resections and RNA expression of important regenerative cytokines (HGF (hepatocyte growth factor), FGF-2 (basic fibroblast growth factor), MCP-1 (monocyte chemotactic protein 1), SDF-1 (stromal cell-derived factor 1) and VEGF (vascular endothelial growth factor) was compared.
Results There was no difference in the expression of HGF, FGF-2, SDF-1 and VEGF between the individual samples, but we were able to demonstrate significantly increased expression of MCP-1 in ASCs obtained from UAL lipoaspirate.
Conclusion UAL and SAL lipoaspirates are suitable for obtaining functional ASCs and are comparable to minimally manipulated cells from abdominoplasty resections.
-
Literatur
- 1 Duscher D, Barrera J, Wong VW. et al. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. Gerontology 2016; 62: 216-25
- 2 Giunta RE, Horch RE, Prantl L. et al. [Consensus of the Deutsche Gesellschaft der Plastischen, Rekonstruktiven und Asthetischen Chirurgen (DGPRAC) on Autologous Fat Grafting]. Handchirurgie, Mikrochirurgie, plastische Chirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft für Handchirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft für Mikrochirurgie der Peripheren Nerven und Gefäße 2016; 48: 337-9
- 3 Zhu M, Zhou Z, Chen Y. et al. Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Annals of plastic surgery 2010; 64: 222-8
- 4 Halvorsen YC, Wilkison WO, Gimble JM. Adipose-derived stromal cells – their utility and potential in bone formation. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity 2000; 24 (Suppl. 04) S41-4
- 5 Safford KM, Hicok KC, Safford SD. et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and biophysical research communications 2002; 294: 371-9
- 6 Rangappa S, Fen C, Lee EH. et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. The Annals of thoracic surgery 2003; 75: 775-9
- 7 Zuk PA, Zhu M, Ashjian P. et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279-95
- 8 Goepfert C, Slobodianski A, Schilling AF. et al. Cartilage engineering from mesenchymal stem cells. Advances in biochemical engineering/biotechnology 2010; 123: 163-200
- 9 Karagianni M, Kraneburg U, Kluter H. et al. [Autologous fat grafts and supportive enrichment with adipose tissue stromal cells]. Handchirurgie, Mikrochirurgie, plastische Chirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse 2013; 45: 93-8
- 10 Thesleff T, Lehtimaki K, Niskakangas T. et al. Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction. Neurosurgery 2011; 68: 1535-40
- 11 Yoshimura K, Sato K, Aoi N. et al. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatologic surgery: official publication for American Society for Dermatologic Surgery [et al] 2008; 34: 1178-85
- 12 Diez-Tejedor E, Gutierrez-Fernandez M, Martinez-Sanchez P. et al. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association 2014; 23: 2694-700
- 13 Bura A, Planat-Benard V, Bourin P. et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy 2014; 16: 245-57
- 14 Largo RD, Tchang LA, Mele V. et al. Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review. Journal of plastic, reconstructive & aesthetic surgery: JPRAS 2014; 67: 437-48
- 15 Rigotti G, Marchi A, Stringhini P. et al. Determining the oncological risk of autologous lipoaspirate grafting for post-mastectomy breast reconstruction. Aesthetic plastic surgery 2010; 34: 475-80
- 16 Zimmerlin L, Donnenberg AD, Rubin JP. et al. Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue engineering Part A 2011; 17 (01/02) 93-106
- 17 Brenelli F, Rietjens M, De Lorenzi F. et al. Oncological safety of autologous fat grafting after breast conservative treatment: a prospective evaluation. The breast journal 2014; 20: 159-65
- 18 Agha RA, Fowler AJ, Herlin C. et al. Use of autologous fat grafting for breast reconstruction: a systematic review with meta-analysis of oncological outcomes. Journal of plastic, reconstructive & aesthetic surgery: JPRAS 2015; 68: 143-61
- 19 Claro F, Figueiredo J, Zampar A. et al. Applicability and safety of autologous fat for reconstruction of the breast. British Journal of Surgery 2012; 99: 768-80
- 20 Astori G, Vignati F, Bardelli S. et al. “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. Journal of translational medicine 2007; 5: 55
- 21 Gentile P, Scioli MG, Orlandi A. et al. Breast Reconstruction with Enhanced Stromal Vascular Fraction Fat Grafting: What Is the Best Method?. Plastic and reconstructive surgery Global open 2015; 3: e406
- 22 Zhu M, Heydarkhan-Hagvall S, Hedrick M. et al. Manual isolation of adipose-derived stem cells from human lipoaspirates. Journal of visualized experiments: JoVE 2013; 79: e50585
- 23 Kosaraju R, Rennert RC, Maan ZN. et al. Adipose-Derived Stem Cell-Seeded Hydrogels Increase Endogenous Progenitor Cell Recruitment and Neovascularization in Wounds. Tissue engineering Part A 2016; 22 (03/04) 295-305
- 24 Garg RK, Rennert RC, Duscher D. et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med 2014; 3: 1079-89
- 25 Walmsley GG, Atashroo DA, Maan ZN. et al. High-Throughput Screening of Surface Marker Expression on Undifferentiated and Differentiated Human Adipose-Derived Stromal Cells. Tissue engineering Part A 2015; 21 (15/16) 2281-91
- 26 Walmsley GG, Senarath-Yapa K, Wearda TL. et al. Surveillance of Stem Cell Fate and Function: A System for Assessing Cell Survival and Collagen Expression In Situ. Tissue engineering Part A 2016; 22 (01/02) 31-40
- 27 Ross RJ, Shayan R, Mutimer KL. et al. Autologous fat grafting: current state of the art and critical review. Annals of plastic surgery 2014; 73: 352-7
- 28 Chung MT, Zimmermann AS, Paik KJ. et al. Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine. Stem cells translational medicine 2013; 2: 808-17
- 29 Faltus T. [Legal Framework of Autologous Fat Usage in Point-of-Care Treatments in Plastic and Aesthetic Surgery – Risks of Criminal Prosecution and Infringement of Medical Law Due to Pharmaceutical Regulations]. Handchirurgie, Mikrochirurgie, plastische Chirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse 2016; 48: 219-25
- 30 Shridharani SM, Broyles JM, Matarasso A. Liposuction devices: technology update. Medical devices 2014; 7: 241-51
- 31 Dolen U, Cohen JB, Overschmidt B. et al. Fat grafting with tissue liquefaction technology as an adjunct to breast reconstruction. Aesthetic Plastic Surgery 2016; 40: 854-62
- 32 Sterodimas A, Boriani F, Magarakis E. et al. Thirtyfour years of liposuction: past, present and future. Eur Rev Med Pharmacol Sci 2012; 16: 393-406
- 33 Berry MG, Davies D. Liposuction: a review of principles and techniques. Journal of plastic, reconstructive & aesthetic surgery: JPRAS 2011; 64: 985-92
- 34 de Souza Pinto EB, Abdala PC, Maciel CM. et al. Liposuction and VASER. Clin Plast Surg 2006; 33: 107-15 vii
- 35 Yoshimura K, Suga H, Eto H. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. 2009
- 36 Tobita M, Orbay H, Mizuno H. Adipose-derived stem cells: current findings and future perspectives. Discovery medicine 2011; 11: 160-70
- 37 Duscher D, Atashroo D, Maan ZN. et al. Ultrasound-assisted liposuction does not compromise the regenerative potential of adipose-derived stem cells. Stem cells translational medicine 2016; 5: 248-57
- 38 Januszyk M, Rennert RC, Sorkin M. et al. Evaluating the Effect of Cell Culture on Gene Expression in Primary Tissue Samples Using Microfluidic-Based Single Cell Transcriptional Analysis. Microarrays 2015; 4: 540-50
- 39 Suga H, Matsumoto D, Eto H. et al. Functional implications of CD34 expression in human adipose-derived stem/progenitor cells. Stem cells and development 2009; 18: 1201-10
- 40 Duscher D, Luan A, Rennert RC. et al. Suction assisted liposuction does not impair the regenerative potential of adipose derived stem cells. Journal of translational medicine 2016; 14: 126
- 41 Abdelaal MM, Aboelatta YA. Comparison of Blood Loss in Laser Lipolysis vs Traditional Liposuction. Aesthet Surg J 2014; 34: 907-12
- 42 Zoccali G, Orsini G, Scandura S. et al. Multifrequency ultrasound-assisted liposuction: 5 years of experience. Aesthetic Plast Surg 2012; 36: 1052-61
- 43 Theodorou SJ, Paresi RJ, Chia CT. Radiofrequency-assisted liposuction device for body contouring: 97 patients under local anesthesia. Aesthetic Plast Surg 2012; 36: 767-79
- 44 Ahmad J, Eaves FF, Rohrich RJ. et al. The American Society for Aesthetic Plastic Surgery (ASAPS) survey: current trends in liposuction. Aesthetic Surgery Journal 2011; 31: 214-24
- 45 Rigotti G, Marchi A, Galie M. et al. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plastic and reconstructive surgery 2007; 119: 1409-22
- 46 Planat-Benard V, Silvestre JS, Cousin B. et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 2004; 109: 656-63
- 47 Suga H, Glotzbach JP, Sorkin M. et al. Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation. Annals of plastic surgery 2014; 72: 234-41
- 48 Garza RM, Rennert RC, Paik KJ. et al. Studies in fat grafting: Part IV. Adipose-derived stromal cell gene expression in cell-assisted lipotransfer. Plast Reconstr Surg 2015; 135: 1045-55
- 49 Blaber SP, Webster RA, Hill CJ. et al. Analysis of in vitro secretion profiles from adipose-derived cell populations. Journal of translational medicine 2012; 10: 172
- 50 Ingber DE. Mechanobiology and diseases of mechanotransduction. Annals of medicine 2003; 35: 564-77
- 51 Giunta R, Horch R, Prantl L. et al. Konsensus der Deutschen Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgen (DGPRÄC) zur Eigenfett-Transplantation. Handchirurgie· Mikrochirurgie· Plastische Chirurgie 2016; 48: 337-9
- 52 Gimble JM, Bunnell BA, Chiu ES. et al. Taking stem cells beyond discovery: a milestone in the reporting of regulatory requirements for cell therapy. Stem cells and development 2011; 20: 1295-6
- 53 Dai X, Liu J, Zheng H. et al. Nano-formulated curcumin accelerates acute wound healing through Dkk-1-mediated fibroblast mobilization and MCP-1-mediated anti-inflammation. NPG Asia Materials 2017; 9: e368
- 54 Wong VW, Rustad KC, Akaishi S. et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nature medicine 2011; 18: 148-52
- 55 Wynn T. Cellular and molecular mechanisms of fibrosis. The Journal of pathology 2008; 214: 199-210
- 56 Bottazzi B, Polentarutti N, Acero R. et al. Regulation of the macrophage content of neoplasms by chemoattractants. Science (New York, NY) 1983; 220: 210-2
- 57 Low QE, Drugea IA, Duffner LA. et al. Wound healing in MIP-1α−/− and MCP-1−/− mice. The American journal of pathology 2001; 159: 457-63
- 58 Prantl L, Rennekampff HO, Giunta RE. et al. [Current Perceptions of Lipofilling on the Basis of the New Guideline on “Autologous Fat Grafting”]. Handchirurgie, Mikrochirurgie, plastische Chirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse 2016; 48: 330-6
- 59 Duscher D, Rennert RC, Januszyk M. et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep 2014; 4: 7144
- 60 Rennert RC, Sorkin M, Januszyk M. et al. Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther 2014; 5: 79