Klinische Neurophysiologie 2017; 48(04): 211-225
DOI: 10.1055/s-0043-118781
Review
© Georg Thieme Verlag KG Stuttgart · New York

Optische Kohärenztomografie in der Neurologie – Methodik und Anwendung in Forschung und Klinik

Optical Coherence Tomography in Neurology: Method and Application in Research and Clinical Routine
Hanna G. Zimmermann
1   NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin
,
Alexander U. Brandt
1   NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin
,
Friedemann Paul
1   NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin
2   Klinik für Neurologie, Charité – Universitätsmedizin Berlin
3   Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin und Charité – Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
18 October 2017 (online)

Zusammenfassung

Die hochauflösende optische Kohärenztomografie (OCT) als nicht-invasives und rasch anwendbares bildgebendes Verfahren zur Untersuchung und Quantifizierung neuro-axonalen Schadens an der Netzhaut hat in den letzten Jahren zunehmend Eingang in die klinische Forschung inclusive interventioneller Studien in der Neurologie, v. a. auf dem Gebiet entzündlicher Erkrankungen, gefunden. Aktuell ist die OCT in der Lage, die Schädigung bzw. Veränderung verschiedener Netzhautschichten (z. B. der Nervenfaserschicht, der Ganglionzellschicht oder der inneren Körnerschicht) bei zahlreichen neurologischen Erkrankungen wie Optikusneuritis, Multiple Sklerose, Neuromyelitis optica, Susac-Syndrom aber auch primär neurodegenerativen Erkrankungen wie M. Parkinson, M. Alzheimer oder spinozerebellären Ataxien darzustellen. In vielen Fällen konnte eine gute Korrelation zwischen mit der OCT quantifizierter struktureller Netzhautschädigung und funktionellen visuellen Beeinträchtigungen inclusive der visuellen Lebensqualität gezeigt werden, was die klinische Relevanz der OCT-Befunde unterstreicht. Ob diese neue bildgebende Technologie Eingang in die klinische Routine-Diagnostik finden wird und für die Diagnostik und Verlaufsbeurteilung individueller Patienten geeignet ist, wird aktuell intensiv erforscht. Dieser Artikel beschreibt die Grundzüge der OCT-Technologie und die wichtigsten OCT-Befunde in Assoziation mit funktionellen Visusbefunden mit einem Schwerpunkt auf den entzündlichen Erkrankungen, für die bislang die meisten Daten vorliegen. Schließlich wird der mögliche zukünftige Einsatz in klinischen Studien und der klinischen Routine diskutiert.

Abstract

High-resolution optical coherence tomography (OCT) as a non-invasive and rapidly applicable imaging technique is being increasingly used in clinical research and interventional trials in neurology in recent years, in particular in inflammatory diseases of the CNS. OCT is capable of detecting and quantifying damage or alterations in various retinal layers (such as the retinal nerve fiber layer, the ganglion cell layer and the inner nuclear layer) in multiple neurological conditions such as optic neuritis, multiple sclerosis, neuromyelitis optica spectrum disorders, Susac syndrome and neurodegenerative disorders such as Parkinson’s disease, Alzheimer’s disease or spinocerebellar ataxias. In many studies, a good correlation between structural retinal damage measurable with OCT and functional visual impairment including visual quality of life could be demonstrated, underscoring the clinical relevance of OCT findings. Whether this technology will enter clinical routine and be found suitable for diagnosis and monitoring of individual patients with neurological conditions is a question that is currently under intensive research. This article describes the basic underpinnings of the technology, as well as the most relevant findings in various neurological disorders in relation to functional visual assessments and with an emphasis on inflammatory conditions, where most data have been gathered to date. The potential future application of OCT in clinical studies and clinical management of neurological patients is also discussed.

 
  • Literatur

  • 1 Heesen C, Böhm J, Reich C. et al. Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable. Mult Scler J 2008; 14: 988-991
  • 2 Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 2003; 21: 1361-1367
  • 3 Bock M, Brandt AU, Dörr J. et al. Time domain and spectral domain optical coherence tomography in multiple sclerosis: a comparative cross-sectional study. Mult Scler J 2010; 16: 893-896
  • 4 Bock M, Paul F, Dörr J. Diagnostik und Verlaufsbeurteilung der Multiplen Sklerose. Nervenarzt 2013; 84: 483-492
  • 5 Brandt AU, Zimmermann H, Scheel M. et al. Untersuchungen des visuellen Systems in der Neurologie: aktuelle Forschung und klinische Relevanz. Aktuelle Neurol 2017; 44: 27-45
  • 6 Oberwahrenbrock T, Weinhold M, Mikolajczak J. et al. Reliability of Intra-Retinal Layer Thickness Estimates. PLoS ONE 2015; 10: e0137316
  • 7 Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs—An Extension of the Modified Airlie House Classification. Ophthalmology 1991; 98: 786-806
  • 8 Bock M, Brandt AU, Dörr J. et al. Patterns of retinal nerve fiber layer loss in multiple sclerosis patients with or without optic neuritis and glaucoma patients. Clin Neurol Neurosurg 2010; 112: 647-652
  • 9 Staurenghi G, Sadda S, Chakravarthy U. et al. Proposed Lexicon for Anatomic Landmarks in Normal Posterior Segment Spectral-Domain Optical Coherence Tomography. Ophthalmology 2014; 121: 1572-1578
  • 10 Cruz-Herranz A, Balk LJ, Oberwahrenbrock T. et al. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 2016; 86: 2303-2309
  • 11 Tewarie P, Balk L, Costello F. et al. The OSCAR-IB Consensus Criteria for Retinal OCT Quality Assessment. PLoS ONE 2012; 7: e34823
  • 12 Schippling S, Balk LJ, Costello F. et al. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler J 2015; 21: 163-170
  • 13 Stellungnahme des Berufsverbandes der Augenärzte Deutschlands, der Deutschen Ophthalmologischen Gesellschaft und der Retinologischen Gesellschaft: Qualitätssicherung der optischen Kohärenztomografie für die Diagnostik des Augenhintergrunds. Stand März 2017
  • 14 Costello F, Coupland S, Hodge W. et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006; 59: 963-969
  • 15 Gabilondo I, Martínez-Lapiscina EH, Fraga-Pumar E. et al. Andorra M, et al. Dynamics of retinal injury after acute optic neuritis. Ann Neurol 2015; 77: 517-528
  • 16 Galetta SL, Villoslada P, Levin N et al. Acute optic neuritis. Neurol. Neuroimmunol. Neuroinflammation [Internet] 2015 [cited 2016 May 27];2. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516397/
  • 17 Aktas O, Albrecht P, Hartung H. Optic neuritis as a phase 2 paradigm for neuroprotection therapies of multiple sclerosis: update on current trials and perspectives. Curr Opin Neurol 2016; 29: 199-204
  • 18 Sühs K-W, Hein K, Sättler MB. et al. A randomized, double-blind, phase 2 study of erythropoietin in optic neuritis. Ann Neurol 2012; 72: 199-210
  • 19 Raftopoulos R, Hickman SJ, Toosy A. et al. Phenytoin for neuroprotection in patients with acute optic neuritis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15: 259-269
  • 20 Cadavid D, Balcer L, Galetta S et al. Evidence of remyelination with the anti-LINGO-1 monoclonal antibody BIIB033 after acute optic neuritis. AAN 67th Annu Meet Abstr. 2015;
  • 21 Costello F, Hodge W, Pan YI. et al. Sex-specific differences in retinal nerve fiber layer thinning after acute optic neuritis. Neurology 2012; 79: 1866-1872
  • 22 Syc SB, Saidha S, Newsome SD. et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain 2012; 135: 521-533
  • 23 Britze J, Pihl-Jensen G, Frederiksen JL. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: a systematic review and meta-analysis. J Neurol 2017; 1-17
  • 24 Al-Louzi OA, Bhargava P, Newsome SD. et al. Outer retinal changes following acute optic neuritis. Mult Scler J 2016; 22: 362-372
  • 25 Gelfand JM, Nolan R, Schwartz DM. et al. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 2012; 135: 1786-1793
  • 26 Kaufhold F, Zimmermann H, Schneider E. et al. Optic Neuritis Is Associated with Inner Nuclear Layer Thickening and Microcystic Macular Edema Independently of Multiple Sclerosis. PLoS ONE 2013; 8: e71145
  • 27 Sotirchos ES, Saidha S, Byraiah G. et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 2013; 80: 1406-1414
  • 28 Brandt AU, Oberwahrenbrock T, Kadas EM. et al. Dynamic formation of macular microcysts independent of vitreous traction changes. Neurology 2014; 83: 73-77
  • 29 Petzold A, Wattjes MP, Costello F. et al. The investigation of acute optic neuritis: a review and proposed protocol Nat. Rev Neurol 2014; 10: 447-458
  • 30 Green AJ, McQuaid S, Hauser SL. et al. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 2010; 133: 1591-1601
  • 31 Parisi V, Manni G, Spadaro M. et al. Correlation between Morphological and Functional Retinal Impairment in Multiple Sclerosis Patients. Invest. Ophthalmol Vis Sci 1999; 40: 2520-2527
  • 32 Frohman E, Costello F, Zivadinov R. et al. Optical coherence tomography in multiple sclerosis. Lancet Neurol 2006; 5: 853-863
  • 33 Fisher JB, Jacobs DA, Markowitz CE. et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 2006; 113: 324-332
  • 34 Albrecht P, Fröhlich R, Hartung H-P. et al. Optical coherence tomography measures axonal loss in multiple sclerosis independently of optic neuritis. J Neurol 2007; 254: 1595-1596
  • 35 Oberwahrenbrock T, Schippling S, Ringelstein M. et al. Retinal damage in multiple sclerosis disease subtypes measured by high-resolution optical coherence tomography. Mult Scler Int 2012; 2012: 530305
  • 36 Gelfand JM, Goodin DS, Boscardin WJ. et al. Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes. PloS One 2012; 7: e36847
  • 37 Petzold A, de Boer JF, Schippling S. et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2010; 9: 921-932
  • 38 Petzold A, Balcer LJ, Calabresi PA. et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2017; 16: 797-812
  • 39 Balcer LJ. Clinical practice. Optic neuritis. N Engl J Med 2006; 354: 1273-1280
  • 40 Toosy AT, Mason DF, Miller DH. Optic neuritis. Lancet Neurol 2014; 13: 83-99
  • 41 Saidha S, Syc SB, Ibrahim MA. et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134: 518-533
  • 42 Brandt AU, Oberwahrenbrock T, Ringelstein M. et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134: e193-e193
  • 43 Balk LJ, Cruz-Herranz A, Albrecht P. et al. Timing of retinal neuronal and axonal loss in MS: a longitudinal OCT study. J Neurol 2016; 263: 1323-1331
  • 44 Outteryck O, Zephir H, Defoort S. et al. Optical coherence tomography in clinically isolated syndrome: no evidence of subclinical retinal axonal loss. Arch Neurol 2009; 66: 1373-1377
  • 45 Kallenbach K, Sander B, Tsakiri A. et al. Neither retinal nor brain atrophy can be shown in patients with isolated unilateral optic neuritis at the time of presentation. Mult Scler J 2011; 17: 89-95
  • 46 Knier B, Berthele A, Buck D. et al. Optical coherence tomography indicates disease activity prior to clinical onset of central nervous system demyelination. Mult Scler J 2016; 22: 893-900
  • 47 Oberwahrenbrock T, Ringelstein M, Jentschke S. et al. Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Mult Scler J 2013; 19: 1887-1895
  • 48 Feinsod M, Hoyt WF. Subclinical optic neuropathy in multiple sclerosis. How early VER components reflect axon loss and conduction defects in optic pathways. J Neurol Neurosurg Psychiatry 1975; 38: 1109-1114
  • 49 Hickman S, Dalton C, Miller D. et al. Management of acute optic neuritis. The Lancet 2002; 360: 1953-1962
  • 50 Sinnecker T, Oberwahrenbrock T, Metz I. et al. Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning – an ultrahigh-field MR pilot study. Eur Radiol 2014; 1-10
  • 51 Azevedo CJ, Overton E, Khadka S et al. Early CNS neurodegeneration in radiologically isolated syndrome. Neurol. Neuroimmunol. Neuroinflammation [Internet] 2015 [cited 2016 Apr 13];2. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396526/
  • 52 Bakshi R, Yeste A, Patel B. et al. Serum lipid antibodies are associated with cerebral tissue damage in multiple sclerosis. Neurol Neuroimmunol Neuroinflammation 2016; 3: e200
  • 53 Vidal-Jordana A, Sastre-Garriga J, Pareto D et al. Brain atrophy 15 years after CIS: Baseline and follow-up clinico-radiological correlations. Mult Scler J 2017 1352458517707070
  • 54 Pfueller CF, Brandt AU, Schubert F. et al. Metabolic changes in the visual cortex are linked to retinal nerve fiber layer thinning in multiple sclerosis. PloS One 2011; 6: e18019
  • 55 Dörr J, Wernecke KD, Bock M. et al. Association of retinal and macular damage with brain atrophy in multiple sclerosis. PloS One 2011; 6: e18132
  • 56 Young KL, Brandt AU, Petzold A. et al. Loss of retinal nerve fibre layer axons indicates white but not grey matter damage in early multiple sclerosis. Eur. J Neurol 2013; 20: 803-811
  • 57 Zimmermann H, Freing A, Kaufhold F. et al. Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations. Mult Scler J 2013; 19: 443-450
  • 58 Saidha S, Al-Louzi O, Ratchford JN. et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: A four-year study. Ann Neurol 2015; 78: 801-813
  • 59 Saidha S, Sotirchos ES, Ibrahim MA. et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 2012; 11: 963-972
  • 60 Knier B, Schmidt P, Aly L. et al. Retinal inner nuclear layer volume reflects response to immunotherapy in multiple sclerosis. Brain 2016; 139: 2855-2863
  • 61 Bock M, Brandt AU, Kuchenbecker J. et al. Impairment of contrast visual acuity as a functional correlate of retinal nerve fibre layer thinning and total macular volume reduction in multiple sclerosis. Br. J Ophthalmol 2012; 96: 62-67
  • 62 Balcer LJ, Frohman EM. Evaluating loss of visual function in multiple sclerosis as measured by low-contrast letter acuity. Neurology 2010; 74 (Suppl. 03) S16-S23
  • 63 Schinzel J, Zimmermann H, Paul F. et al. Relations of low contrast visual acuity, quality of life and multiple sclerosis functional composite: a cross-sectional analysis. BMC Neurol 2014; 14: 31
  • 64 Walter SD, Ishikawa H, Galetta KM. et al. Ganglion Cell Loss in Relation to Visual Disability in Multiple Sclerosis. Ophthalmology 2012; 119: 1250-1257
  • 65 Saidha S, Syc SB, Durbin MK. et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler J 2011; 17: 1449-1463
  • 66 Maggio GD, Santangelo R, Guerrieri S. et al. Optical coherence tomography and visual evoked potentials: which is more sensitive in multiple sclerosis?. Mult Scler J 2014; 20: 1342-1347
  • 67 Sriram P, Wang C, Yiannikas C. et al. Relationship between optical coherence tomography and electrophysiology of the visual pathway in non-optic neuritis eyes of multiple sclerosis patients. PloS One 2014; 9: e102546
  • 68 Pihl-Jensen G, Schmidt MF, Frederiksen JL. Multifocal visual evoked potentials in optic neuritis and multiple sclerosis: A review. Clin Neurophysiol 2017; 128: 1234-1245
  • 69 Pérez-Miralles FC, Sastre-Garriga J, Vidal-Jordana A et al. Predictive value of early brain atrophy on response in patients treated with interferon β. Neurol Neuroimmunol Neuroinflammation [Internet] 2015 [cited 2016 Apr 13]; 2. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496631/
  • 70 Wattjes MP, Rovira À, Miller D. et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis – establishing disease prognosis and monitoring patients. Nat Rev Neurol. 2015; 11: 597-606
  • 71 Scheel M, Finke C, Oberwahrenbrock T. et al. Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: A combined optical coherence tomography and diffusion tensor imaging study. Mult Scler J 2014; 20: 1904-1907
  • 72 Brandt AU, Martinez-Lapiscina EH, Nolan R. et al. Monitoring the Course of MS With Optical Coherence Tomography. Curr Treat Options Neurol 2017; 19: 15
  • 73 Manogaran P, Hanson JVM, Olbert ED. et al. Optical Coherence Tomography and Magnetic Resonance Imaging in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder. Int J Mol Sci 2016; 17: 1894
  • 74 Martinez-Lapiscina EH, Arnow S, Wilson JA. et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol 2016; 15: 574-584
  • 75 Polman CH, Reingold SC, Banwell B. et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol 2011; 69: 292-302
  • 76 Pérez-Rico C, Ayuso-Peralta L, Rubio-Pérez L. et al. Evaluation of Visual Structural and Functional Factors That Predict the Development of Multiple Sclerosis in Clinically Isolated Syndrome Patients. Invest Ophthalmol Vis Sci 2014; 55: 6127-6131
  • 77 Zekeridou A, Lennon VA. Aquaporin-4 autoimmunity. Neurol Neuroimmunol Neuroinflammation [Internet] 2015 [cited 2016 Jun 21]; 2. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442096/
  • 78 Metz I, Beißbarth T, Ellenberger D. et al. Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis. Neurol Neuroimmunol Neuroinflammation 2016; 3: e204
  • 79 Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol 2014; 176: 149-164
  • 80 Pandit L, Asgari N, Apiwattanakul M. et al. Demographic and clinical features of neuromyelitis optica: A review. Mult Scler J 2015; 21: 845-853
  • 81 Melamed E, Levy M, Waters PJ. et al. Update on biomarkers in neuromyelitis optica. Neurol Neuroimmunol Neuroinflammation 2015; 2: e134
  • 82 Davoudi V, Keyhanian K, Bove RM. et al. Immunology of neuromyelitis optica during pregnancy. Neurol Neuroimmuno Neuroinflammation 2016; 3: e288
  • 83 Bennett JL, O’Connor KC, Bar-Or A. et al. B lymphocytes in neuromyelitis optica. Neurol Neuroimmunol Neuroinflammation 2015; 2: e104
  • 84 Paul F, Jarius S, Aktas O. et al. Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica. PLoS Med. 2007; 4: e133
  • 85 Takeshita Y, Obermeier B, Cotleur AC. et al. Effects of neuromyelitis optica-IgG at the blood-brain barrier in vitro. Neurol Neuroimmunol Neuroinflammation 2017; 4: e311
  • 86 Chavarro VS, Mealy MA, Simpson A. et al. Insufficient treatment of severe depression in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflammation 2016; 3: e286
  • 87 Stellmann J-P, Krumbholz M, Friede T. et al. Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response. J Neurol Neurosurg Psychiatry 2017; 88: 639-647
  • 88 Ayzenberg I, Schöllhammer J, Hoepner R. et al. Efficacy of glatiramer acetate in neuromyelitis optica spectrum disorder: a multicenter retrospective study. J Neurol 2016; 263: 575-582
  • 89 Trebst C, Jarius S, Berthele A. et al. Update on the diagnosis and treatment of neuromyelitis optica: Recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 2013; 261: 1-16
  • 90 Kleiter I, Hellwig K, Berthele A. et al. Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch Neurol 2012; 69: 239-245
  • 91 Valentino P, Marnetto F, Granieri L. et al. Aquaporin-4 antibody titration in NMO patients treated with rituximab: A retrospective study. Neurol Neuroimmunol Neuroinflammation 2017; 4: e317
  • 92 Gahlen A, Trampe A-K, Haupeltshofer S. et al. Aquaporin-4 antibodies in patients treated with natalizumab for suspected MS. Neurol. Neuroimmunol. Neuroinflammation 2017; 4: e363
  • 93 Jarius S, Paul F, Franciotta D. et al. Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat Clin Pract Neurol 2008; 4: 202-214
  • 94 Pache F, Wildemann B, Paul F. et al. Neuromyelitis Optica. Fortschritte Neurol Psychiatr 2017; 85: 100-114
  • 95 Wingerchuk DM, Banwell B, Bennett JL. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85: 177-189
  • 96 Bennett JL, de Seze J, Lana-Peixoto M. et al. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography. Mult Scler J 2015; 21: 678-688
  • 97 Schneider E, Zimmermann H, Oberwahrenbrock T. et al. Optical Coherence Tomography Reveals Distinct Patterns of Retinal Damage in Neuromyelitis Optica and Multiple Sclerosis. PLOS ONE 2013; 8: e66151
  • 98 Merle H, Olindo S, Donnio A. et al. Retinal peripapillary nerve fiber layer thickness in neuromyelitis optica. Invest Ophthalmol Vis Sci 2008; 49: 4412-4417
  • 99 Naismith RT, Tutlam NT, Xu J. et al. Optical coherence tomography differs in neuromyelitis optica compared with multiple sclerosis. Neurology 2009; 72: 1077-1082
  • 100 Ratchford JN, Quigg ME, Conger A. et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology 2009; 73: 302-308
  • 101 Nakamura M, Nakazawa T, Doi H. et al. Early high-dose intravenous methylprednisolone is effective in preserving retinal nerve fiber layer thickness in patients with neuromyelitis optica. Graefes Arch Clin Exp. Ophthalmol 2010; 248: 1777-1785
  • 102 Monteiro MLR, Fernandes DB, Apóstolos-Pereira SL. et al. Quantification of Retinal Neural Loss in Patients with Neuromyelitis Optica and Multiple Sclerosis with or without Optic Neuritis Using Fourier-Domain Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2012; 53: 3959-3966
  • 103 Sotirchos ES, Saidha S, Byraiah G. et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 2013; 80: 1406-1414
  • 104 Fernandes DB, Raza AS, Nogueira RGF. et al. Evaluation of Inner Retinal Layers in Patients with Multiple Sclerosis or Neuromyelitis Optica Using Optical Coherence Tomography. Ophthalmology 2013; 120: 387-394
  • 105 Bichuetti DB, de Camargo AS, Falcão AB. et al. The Retinal Nerve Fiber Layer of Patients With Neuromyelitis Optica and Chronic Relapsing Optic Neuritis is More Severely Damaged than Patients With Multiple Sclerosis. J Neuroophthalmol 2013; 33: 220-224
  • 106 Tian G, Li Z, Zhao G et al. Evaluation of Retinal Nerve Fiber Layer and Ganglion Cell Complex in Patients with Optic Neuritis or Neuromyelitis Optica Spectrum Disorders Using Optical Coherence Tomography in a Chinese Cohort. J Ophthalmol [Internet] 2015 [cited 2017 Aug 22]; 2015. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662994/
  • 107 Oertel FC, Zimmermann H, Mikolajczak J. et al. Contribution of blood vessels to retinal nerve fiber layer thickness in NMOSD. Neurol Neuroimmunol Neuroinflammation 2017; 4: e338
  • 108 Schmidt F, Zimmermann H, Mikolajczak J. et al. Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2017; 11: 45-50
  • 109 Lange AP, Sadjadi R, Zhu F. et al. Spectral-Domain Optical Coherence Tomography of Retinal Nerve Fiber Layer Thickness in NMO Patients: J. Neuroophthalmol 2013; 33: 213-219
  • 110 Oertel FC, Kuchling J, Zimmermann H. et al. Microstructural visual system changes in AQP4-antibody–seropositive NMOSD. Neurol. – Neuroimmunol Neuroinflammation 2017; 4: e334
  • 111 Jeong IH, Kim HJ, Kim N-H. et al. Subclinical primary retinal pathology in neuromyelitis optica spectrum disorder. J Neurol 2016; 263: 1343-1348
  • 112 Akiba R, Yokouchi H, Mori M. et al. Retinal Morphology and Sensitivity Are Primarily Impaired in Eyes with Neuromyelitis Optica Spectrum Disorder (NMOSD). PLOS ONE 2016; 11: e0167473
  • 113 Ouyang Y, Walsh AC, Keane PA. et al. Different phenotypes of the appearance of the outer plexiform layer on optical coherence tomography. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von Graefes Arch Klin Exp. Ophthalmol 2013; 251: 2311-237
  • 114 Jarius S, Ruprecht K, Kleiter I. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation 2016; 13: 279
  • 115 Jarius S, Ruprecht K, Kleiter I. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 2016; 13: 280
  • 116 Jarius S, Kleiter I, Ruprecht K. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement – frequency, presentation and outcome. J Neuroinflammation 2016; 13: 281
  • 117 Pache F, Zimmermann H, Mikolajczak J. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. J Neuroinflammation 2016; 13: 282
  • 118 Ogawa R, Nakashima I, Takahashi T et al. MOG antibody–positive, benign, unilateral, cerebral cortical encephalitis with epilepsy. Neurol Neuroimmunol Neuroinflammation [Internet]. 2017 [cited 2017 Jul 5];4. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241006/
  • 119 Spadaro M, Gerdes LA, Krumbholz M. et al. Autoantibodies to MOG in a distinct subgroup of adult multiple sclerosis. Neurol Neuroimmunol Neuroinflammation 2016; 3: e257
  • 120 KimS-M, Woodhall MR, Kim J-S et al. Antibodies to MOG in adults with inflammatory demyelinating disease of the CNS. Neurol Neuroimmunol Neuroinflammation [Internet]. 2015 [cited 2016 Feb 18];2. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608758/
  • 121 Chalmoukou K, Alexopoulos H, Akrivou S. et al. Anti-MOG antibodies are frequently associated with steroid-sensitive recurrent optic neuritis. Neurol Neuroimmunol Neuroinflammation 2015; 2: e131
  • 122 Waters P, Woodhall M, O’Connor KC et al. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol Neuroimmunol Neuroinflammation [Internet]. 2015 [cited 2016 May 6];2. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370386/
  • 123 Hacohen Y, Absoud M, Deiva K et al. Myelin oligodendrocyte glycoprotein antibodies are associated with a non-MS course in children. Neurol Neuroimmunol Neuroinflammation[Internet]. 2015 [cited 2017 Jul 5];2. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4360800/
  • 124 Zamvil SS, Slavin AJ. Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol Neuroimmunol Neuroinflammation [Internet]. 2015 [cited 2015 Feb 23];2. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309526/
  • 125 Reindl M, Rostasy K. MOG antibody-associated diseases. Neurol. Neuroimmunol Neuroinflammation[Internet]. 2015 [cited 2015 Dec 16];2. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309525/
  • 126 Dörr J, Radbruch H, Bock M. et al. Encephalopathy, visual disturbance and hearing loss—recognizing the symptoms of Susac syndrome. Nat Rev Neurol 2009; 5: 683-688
  • 127 Kleffner I, Dörr J, Ringelstein M. et al. Diagnostic criteria for Susac syndrome. J Neurol Neurosurg Psychiatry 2016; jnnp-2016-314295
  • 128 Jarius S, Kleffner I, Dorr JM. et al. Clinical, paraclinical and serological findings in Susac syndrome: an international multicenter study. J Neuroinflammation 2014; 11: 46
  • 129 Dörr J, Krautwald S, Wildemann B. et al. Characteristics of Susac syndrome: a review of all reported cases. Nat Rev Neurol 2013; 9: 307-316
  • 130 Wuerfel J, Sinnecker T, Ringelstein EB. et al. Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler J 2012; 18: 1592-1599
  • 131 Dörr J, Jarius S, Wildemann B. et al. Susac-Syndrom. Nervenarzt 2011; 82: 1250-1263
  • 132 Zhovtis Ryerson L, Kister I, Snuderl M. et al. Incomplete Susac syndrome exacerbated after natalizumab. Neurol Neuroimmunol Neuroinflammation 2015; 2: e151
  • 133 Brandt AU, Zimmermann H, Kaufhold F. et al. Patterns of retinal damage facilitate differential diagnosis between susac syndrome and MS. PLoS ONE 2012; 7: e38741
  • 134 Ringelstein M, Albrecht P, Kleffner I. et al. Retinal pathology in Susac syndrome detected by spectral-domain optical coherence tomography. Neurology 2015; 85: 610-618
  • 135 Brandt AU, Oberwahrenbrock T, Costello F. et al. Retinal lesion evolution in susac syndrome. Retina 2016; 36: 366-374
  • 136 Kreye J, Wenke NK, Chayka M. et al. Human cerebrospinal fluid monoclonal N -methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain 2016; 139: 2641-2652
  • 137 Volz MS, Finke C, Harms L. et al. Altered paired associative stimulation-induced plasticity in NMDAR encephalitis. Ann Clin Transl Neurol 2016; 3: 101-113
  • 138 Heine J, Prüss H, Bartsch T. et al. Imaging of autoimmune encephalitis – Relevance for clinical practice and hippocampal function. Neuroscience 2015; 309: 68-83
  • 139 Finke C, Kopp UA, Pajkert A. et al. Structural Hippocampal Damage Following Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Biol Psychiatry 2016; 79: 727-734
  • 140 Finke C, Kopp UA, Scheel M. et al. Functional and structural brain changes in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2013; 74: 284-296
  • 141 Brandt AU, Oberwahrenbrock T, Mikolajczak J et al. Visual dysfunction, but not retinal thinning, following anti-NMDA receptor encephalitis. Neurol Neuroimmunol Neuroinflammation [Internet]. 2016 [cited 2017 Jul 5];3. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747477/
  • 142 Biousse V, Skibell BC, Watts RL. et al. Ophthalmologic features of Parkinson’s disease. Neurology 2004; 62: 177-180
  • 143 Yu J-G, Feng Y-F, Xiang Y. et al. Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PloS One 2014; 9: e85718
  • 144 Roth NM, Saidha S, Zimmermann H. et al. Photoreceptor layer thinning in idiopathic Parkinson’s disease: Photoreceptors in Parkinson’s Disease. Mov. Disord 2014; 29: 1163-1170
  • 145 Stricker S, Oberwahrenbrock T, Zimmermann H. et al. Temporal retinal nerve fiber loss in patients with spinocerebellar ataxia type 1. PloS One 2011; 6: e23024
  • 146 Roth NM, Saidha S, Zimmermann H. et al. Optical coherence tomography does not support optic nerve involvement in amyotrophic lateral sclerosis. Eur J Neurol 2013; 20: 1170-1176
  • 147 Ringelstein M, Albrecht P, Südmeyer M. et al. Subtle retinal pathology in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2014; 1: 290-297
  • 148 Simonett JM, Huang R, Siddique N. et al. Macular sub-layer thinning and association with pulmonary function tests in Amyotrophic Lateral Sclerosis. Sci Rep 2016; 6: 29187
  • 149 Albrecht P, Blasberg C, Lukas S. et al. Retinal pathology in idiopathic moyamoya angiopathy detected by optical coherence tomography. Neurology 2015; 85: 521-527
  • 150 Ewering C, Haşal N, Alten F. et al. Temporal retinal nerve fibre layer thinning in cluster headache patients detected by optical coherence tomography. Cephalalgia Int J Headache 2015; 35: 946-958
  • 151 Reggio E, Chisari CG, Ferrigno G. et al. Migraine causes retinal and choroidal structural changes: evaluation with ocular coherence tomography. J Neurol 2017; 264: 494-502
  • 152 Alten F, Motte J, Ewering C. et al. Multimodal retinal vessel analysis in CADASIL patients. PloS One 2014; 9: e112311
  • 153 Berisha F, Feke GT, Trempe CL. et al. Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 2007; 48: 2285-2289
  • 154 Kaufhold F, Kadas EM, Schmidt C et al. Optic Nerve Head Quantification in Idiopathic Intracranial Hypertension by Spectral Domain OCT. PLoS ONE[Internet]. 2012 [cited 2014 Sep 5];7. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352870/
  • 155 Albrecht P, Blasberg C, Ringelstein M. et al. Optical coherence tomography for the diagnosis and monitoring of idiopathic intracranial hypertension. J Neurol 2017; 264: 1370-1380
  • 156 Heßler H, Zimmermann H, Oberwahrenbrock T. et al. No evidence for retinal damage evolving from reduced retinal blood flow in carotid artery disease. BioMed Res Int 2015; 2015: 604028
  • 157 Akaishi T, Sato DK, Nakashima I et al. MRI and retinal abnormalities in isolated optic neuritis with myelin oligodendrocyte glycoprotein and aquaporin-4 antibodies: a comparative study. J Neurol Neurosurg Psychiatry 2015
  • 158 Havla J, Kümpfel T, Schinner R. et al. Myelin-oligodendrocyte-glycoprotein (MOG) autoantibodies as potential markers of severe optic neuritis and subclinical retinal axonal degeneration. J Neurol 2017; 264: 139-151
  • 159 Pula JH, Towle VL, Staszak VM. et al. Retinal nerve fibre layer and macular thinning in spinocerebellar ataxia and cerebellar multisystem atrophy. Neuro-Ophthalmol Aeolus Press 2011; 35: 108-114
  • 160 Fortuna F, Barboni P, Liguori R. et al. Visual system involvement in patients with Friedreich’s ataxia. Brain 2009; 132: 116-123
  • 161 Barboni P, Savini G, Valentino ML. et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber’s hereditary optic neuropathy. Ophthalmology 2005; 112: 120-126
  • 162 Valenti DA. Neuroimaging of retinal nerve fiber layer in AD using optical coherence tomography. Neurology 2007; 69: 1060-1060
  • 163 Hajee ME, March WF, Lazzaro DR. et al. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 2009; 127: 737-741