Dtsch Med Wochenschr 2018; 143(09): 643-650
DOI: 10.1055/s-0043-119958
Dossier
© Georg Thieme Verlag KG Stuttgart · New York

Multiresistente Bakterien: Antibiotikaverordnung und Reserveantibiotika

Multiresistant Bacteria – Antibiotic Prescription and Antibiotics of Last Resort
Winfried V. Kern
Further Information

Publication History

Publication Date:
23 April 2018 (online)

Abstract

Ascertaining critical indications for antibiotics and rational prescribing can delay and minimize the spread of antibiotic resistance. Room for improvement lies in particular in a stricter indication, in shortening antibiotic treatment and in initiating more targeted therapies with narrow-spectrum drugs. Not all infections due to multidrug-resistant organisms require treatment with reserve drugs. Detailed susceptibility testing together with enhanced knowledge of pharmacokinetics and -dynamics are needed for adequate treatment decisions. There are some new drugs with interesting spectrum of activity in development. The problem of antimicrobial resistance in human medicine, however, must also be seen in the context of “One Health” interactions between various systems including environmental issues and food production.

Kritische Indikationen und rationale Verordnung können die weitere Ausbreitung von Antibiotikaresistenzen verzögern und minimieren. Potenzial liegt hier in einer strengeren Indikationsstellung bei Verschreibungen und einer Verkürzung der Therapiedauer – Infektionen durch multiresistente Erreger benötigen nicht immer eine Therapie mit Reserveantibiotika!

 
  • Literatur

  • 1 Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Paul-Ehrlich-Gesellschaft für Chemotherapie e.V. GERMAP 2015 – Bericht über den Antibiotikaverbrauch und die Verbreitung von Antibiotikaresistenzen in der Human- und Veterinärmedizin in Deutschland. Rheinbach: Antiinfectives Intelligence; 2016 (korrigierte Version 2017)
  • 2 Robert Koch-Institut. Antibiotika-Resistenz-Surveillance ARS. Im Internet: https://ars.rki.de/Content/Database/ResistanceDevelopment.aspx ; Stand: 16.03.2018
  • 3 Imöhl M, Reinert RR, van der Linden M. Antibiotic susceptibility rates of invasive pneumococci before and after the introduction of pneumococcal conjugate vaccination in Germany. Int J Med Microbiol 2015; 305: 776-778
  • 4 European Centre for Disease Prevention and Control (ECDC). Surveillance of antimicrobial resistance in Europe 2016. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2017: 1-87 . doi:10.2900/296939
  • 5 Olzowy B, Kresken M, Havel M. et al. Antimicrobial susceptibility of bacterial isolates from patients presenting with ear, nose and throat (ENT) infections in the German community healthcare setting. Eur J Clin Microbiol Infect Dis 2017; 36: 1685-1690
  • 6 Gatermann S, Kresken M, Kern WV. Antibiotika-Empfindlichkeit: Grenzwerte sind hilfreich. Dtsch Arztebl 2017; 114: A-1314
  • 7 Gastmeier P, Schröder C, Behnke M. et al. Dramatic increase in vancomycin-resistant enterococci in Germany. J Antimicrob Chemother 2014; 69: 1660-1664
  • 8 Gilbert EM, Zembower TR, Rhodes NJ. et al. Factors contributing to vancomycin-resistant Enterococcus spp. horizontal transmission events. Diagn Microbiol Infect Dis 2017; 89: 72-77
  • 9 Remschmidt C, Behnke M, Kola A. et al. The effect of antibiotic use on prevalence of nosocomial vancomycin-resistant enterococci. Antimicrob Resist Infect Control 2017; 6: 95
  • 10 McKinnell JA, Kunz DF, Moser SA. et al. Patient-level analysis of incident vancomycin-resistant enterococci colonization and antibiotic days of therapy. Epidemiol Infect 2016; 144: 1748-1755
  • 11 European Committee on Antimicrobial Susceptibility Testing – EUCAST. Im Internet http://www.eucast.org/ ; Stand: 16.03.2018
  • 12 Honsa ES, Cooper VS, Mhaissen MN. et al. RelA mutant Enterococcus faecium with multiantibiotic tolerance arising in an immunocompromised host. MBio 2017; 8: e02124-16
  • 13 Bhardwaj P, Hans A, Ruikar K. et al. Reduced chlorhexidine and daptomycin susceptibility in vancomycin-resistant Enterococcus faecium after serial chlorhexidine exposure. Antimicrob Agents Chemother 2017; 62: e01235-17
  • 14 de Lastours V, Maugy E, Mathy V. et al. Ecological impact of ciprofloxacin on commensal enterococci in healthy volunteers. J Antimicrob Chemother 2017; 72: 1574-1580
  • 15 Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill 2008; 13: 19044
  • 16 Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases. J Antimicrob Chemother 2017; 72: 2145-2155
  • 17 Hering J, Frömke C, von Münchhausen C. et al. Cefotaxime-resistant Escherichia coli in broiler farms-A cross-sectional investigation in Germany. Prev Vet Med 2016; 125: 154-157
  • 18 Ruppé E, Andremont A, Armand-Lefèvre L. Digestive tract colonization by multidrug-resistant Enterobacteriaceae in travellers: an update. Travel Med Infect Dis 2018; 21: 28-35
  • 19 Bar-Yoseph H, Hussein K, Braun E. et al. Natural history and decolonization strategies for ESBL/carbapenem-resistant Enterobacteriaceae carriage. J Antimicrob Chemother 2016; 71: 2729-2739
  • 20 Woerther PL, Burdet C, Chachaty E. et al. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev 2013; 26: 744-758
  • 21 Madec JY, Haenni M, Nordmann P. et al. Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans?. Clin Microbiol Infect 2017; 23: 826-833
  • 22 Monira S, Shabnam SA, Ali SI. et al. Multi-drug resistant pathogenic bacteria in the gut of young children in Bangladesh. Gut Pathog 2017; 9: 19
  • 23 Manges AR. Escherichia coli and urinary tract infections: the role of poultry-meat. Clin Microbiol Infect 2016; 22: 122-112
  • 24 Chang YT, Coombs G, Ling T. et al. Epidemiology and trends in the antibiotic susceptibilities of Gram-negative bacilli isolated from patients with intra-abdominal infections in the Asia-Pacific region, 2010–2013. Int J Antimicrob Agents 2017; 49: 734-739
  • 25 Purohit MR, Chandran S, Shah H. et al. Antibiotic resistance in an Indian rural community: a ‘One-Health’ observational study on commensal coliform from humans, animals, and water. Int J Environ Res Public Health 2017; 14: e386
  • 26 Ni Q, Tian Y, Zhang L. et al. Prevalence and quinolone resistance of fecal carriage of extended-spectrum β-lactamase-producing Escherichia coli in 6 communities and 2 physical examination center populations in Shanghai, China. Diagn Microbiol Infect Dis 2016; 86: 428-433
  • 27 Alonso CA, Zarazaga M, Ben Sallem R. et al. Antibiotic resistance in Escherichia coli in husbandry animals: the African perspective. Lett Appl Microbiol 2017; 64: 318-334
  • 28 Hamprecht A, Rohde AM, Behnke M. et al. Colonization with third-generation cephalosporin-resistant Enterobacteriaceae on hospital admission: prevalence and risk factors. J Antimicrob Chemother 2016; 71: 2957-2963
  • 29 Alcalá L, Alonso CA, Simón C. et al. Wild birds, frequent carriers of extended-spectrum β-lactamase (ESBL) producing Escherichia coli of CTX-M and SHV-12 types. Microb Ecol 2016; 72: 861-869
  • 30 Sanjit Singh A, Lekshmi M, Prakasan S. et al. Multiple antibiotic-resistant, extended spectrum-β-lactamase (ESBL)-producing Enterobacteria in fresh seafood. Microorganisms 2017; 5: e53
  • 31 Overdevest I, Haverkate M, Veenemans J. et al. Prolonged colonisation with Escherichia coli O25:ST131 versus other extended-spectrum beta-lactamase-producing E. coli in a long-term care facility with high endemic level of rectal colonisation, the Netherlands, 2013 to 2014. Euro Surveill 2016; 21: 30376
  • 32 Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 2014; 27: 543-574
  • 33 Mathers AJ, Peirano G, Pitout JD. Escherichia coli ST131: The quintessential example of an international multiresistant high-risk clone. Adv Appl Microbiol 2015; 90: 109-154
  • 34 Johnson JR, Porter SB, Johnston B. et al. Extraintestinal pathogenic and antimicrobial-resistant Escherichia coli, including sequence type 131 (ST131), from retail chicken breasts in the United States in 2013. Appl Environ Microbiol 2017; 83: e02956-16
  • 35 Johnson JR, Porter S, Thuras P. et al. The pandemic H30 subclone of sequence type 131 (ST131) as the leading cause of multidrug-resistant Escherichia coli infections in the United States (2011–2012). Open Forum Infect Dis 2017; 4 DOI: 10.1093/ofid/ofx089.
  • 36 Paul-Ehrlich-Gesellschaft. http://media.econtext.de/v1/stream/16-433/f1dfdd48f8dca8f57b14ab8f284cdbed/1484302194/16/433.econtext
  • 37 Kahlmeter G. The 2014 Garrod Lecture: EUCAST – are we heading towards international agreement?. J Antimicrob Chemother 2015; 70: 2427-2439
  • 38 Mischnik A, Baumert P, Hamprecht A. et al. Susceptibility to cephalosporin combinations and aztreonam/avibactam among third-generation cephalosporin-resistant Enterobacteriaceae recovered on hospital admission. Int J Antimicrob Agents 2017; 49: 239-242
  • 39 Mischnik A, Baumert P, Hamprecht A. et al. Susceptibility to penicillin derivatives among third-generation cephalosporin-resistant Enterobacteriaceae recovered on hospital admission. Diagn Microbiol Infect Dis 2017; 87: 71-73
  • 40 Tamma PD, Rodriguez-Bano J. The Use of noncarbapenem β-lactams for the treatment of extended-spectrum β-lactamase infections. Clin Infect Dis 2017; 64: 972-980
  • 41 Mischnik A, Baumert P, Hamprecht A. et al. In vitro susceptibility to 19 agents other than β-lactams among third-generation cephalosporin-resistant Enterobacteriaceae recovered on hospital admission. J Antimicrob Chemother 2017; 72: 1359-1363
  • 42 Potter RF, D’Souza AW, Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat 2016; 29: 30-46
  • 43 Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae. J Infect Dis 2017; 215: 28-36 . doi: 10.1093/infdis/jiw282
  • 44 Li Y, Sun QL, Shen Y. et al. Rapid increase in the prevalence of carbapenem-resistant Enterobacteriaceae (CRE) and emergence of colistin resistance gene mcr-1 in CRE in a hospital in Henan, China. J Clin Microbiol 2018; DOI: 10.1128/JCM.01932-17.
  • 45 WHO 2018. Antimicrobial Resistance: Global Report on Surveillance. 2014 Im Internet http://www.who.int/drugresistance/documents/surveillancereport/en/ ; Stand: 16.03.2018
  • 46 van Loon K, Voor In ’t Holt AF, Vos MC. A systematic review and meta-analyses of the clinical epidemiology of carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother 2017; 62: e01730-17
  • 47 Escandón-Vargas K, Reyes S, Gutiérrez S. et al. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2017; 15: 277-229
  • 48 van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam. Clin Infect Dis 2016; 63: 234-241
  • 49 van Duin D, Lok JJ, Earley M. et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clin Infect Dis 2018; 66: 163-171
  • 50 Zhanel GG, Lawrence CK, Adam H. et al. Imipenem-relebactam and meropenem-vaborbactam. Drugs 2018; 78: 65-98
  • 51 Rotondo CM, Wright GD. Inhibitors of metallo-β-lactamases. Curr Opin Microbiol 2017; 39: 96-105
  • 52 Abedon ST. Phage therapy: various perspectives on how to improve the art. Methods Mol Biol 2018; 1734: 113-112
  • 53 Ajuebor J, McAuliffe O, O’Mahony J. et al. Bacteriophage endolysins and their applications. Sci Prog 2016; 99: 183-199