Int J Sports Med 2018; 39(01): 67-72
DOI: 10.1055/s-0043-120763
Genetics & Molecular Biology
© Georg Thieme Verlag KG Stuttgart · New York

Sprint Interval Training Decreases Circulating MicroRNAs Important for Muscle Development

Joshua Denham
1   School of Science and Technology, University of New England, Armidale, Australia
,
Adrian Gray
1   School of Science and Technology, University of New England, Armidale, Australia
,
John Scott-Hamilton
2   School of Health, University of New England, Armidale, Australia
,
Amanda D. Hagstrom
1   School of Science and Technology, University of New England, Armidale, Australia
› Author Affiliations
Further Information

Publication History



accepted after revision 28 September 2017

Publication Date:
10 November 2017 (online)

Abstract

Small non-coding RNAs, such as microRNAs (miRNAs), have emerged as powerful post-transcriptional regulators of gene expression that play important roles in many developmental and biological processes. In this study, we assessed the abundance of circulating microRNAs important for skeletal muscle and heart adaptations to exercise (miR-1, miR-133a, miR-133b and miR-486), following acute exercise and short-term sprint interval training (SIT). Twenty-eight individuals completed four all-out efforts on a cycle ergometer, and donated blood before and 30 min after the cessation of exercise. A subset of 10 untrained men completed 4-6 efforts of SIT, three times a week for 6 weeks, and donated resting blood samples before and after the intervention. MiRNA TaqMan qPCR was performed and whilst no changes were observed after a single session of SIT (all p>0.05), the 6-wk SIT intervention significantly reduced the whole blood content of all four miRNAs (mean fold-changes: 0.37–0.48, all p<0.01). Our data suggests that circulating miRNAs are responsive to short-term SIT and could have roles in SIT-induced health and performance adaptations. Further work is required to establish whether circulating miRNAs could serve as biomarkers for predicting exercise training responses and monitoring exercise interventions.

 
  • References

  • 1 Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 2005; 132: 4653-4662
  • 2 Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011; 108: 5003-5008
  • 3 Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, Wang TJ, Chan SY. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol 2011; 589: 3983-3994
  • 4 Banzet S, Chennaoui M, Girard O, Racinais S, Drogou C, Chalabi H, Koulmann N. Changes in circulating microRNAs levels with exercise modality. J Appl Physiol 2013; 115: 1237-1244
  • 5 Barwari T, Joshi A, Mayr M. MicroRNAs in Cardiovascular Disease. J Am Coll Cardiol 2016; 68: 2577-2584
  • 6 Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 2011; 12: 846-860
  • 7 Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E, Plasterk RH. Diversity of microRNAs in human and chimpanzee brain. Nat Genet 2006; 38: 1375-1377
  • 8 Bouman A, Heineman MJ, Faas MM. Sex hormones and the immune response in humans. Hum Reprod Update 2005; 11: 411-423
  • 9 Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 2008; 586: 151-160
  • 10 Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol 2005; 98: 1985-1990
  • 11 Bye A, Rosjo H, Aspenes ST, Condorelli G, Omland T, Wisloff U. Circulating microRNAs and aerobic fitness--the HUNT-Study. PLoS One 2013; 8: e57496
  • 12 Cochran AJ, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, Tarnopolsky MA, Gibala MJ. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp Physiol 2014; 99: 782-791
  • 13 Cui SF, Wang C, Yin X, Tian D, Lu QJ, Zhang CY, Chen X, Ma JZ. Similar responses of circulating microRNAs to acute high-intensity interval exercise and vigorous-intensity continuous exercise. Front Physiol 2016; 7: 102
  • 14 Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, Timmons JA, Phillips SM. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol 2011; 110: 309-317
  • 15 Denham J. Exercise and epigenetic inheritance of disease risk. Acta Physiol (Oxf) 2017; DOI: 10.1111/apha.12881.
  • 16 Denham J, O'Brien BJ, Marques FZ, Charchar FJ. Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. J Appl Physiol 2015; 118: 475-488
  • 17 Denham J, O'Brien BJ, Prestes PR, Brown NJ, Charchar FJ. Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres. J Appl Physiol 2016; 120: 148-158
  • 18 Denham J, Prestes PR. Muscle-enriched microRNAs isolated from whole blood are regulated by exercise and are potential biomarkers of cardiorespiratory fitness. Front Genet 2016; 7: 196
  • 19 Dweep H, Gretz N, Sticht C. miRWalk database for miRNA-target interactions. Methods Mol Biol 2014; 1182: 289-305
  • 20 Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA, Cimino V, De Marinis L, Frustaci A, Catalucci D, Condorelli G. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 2009; 120: 2377-2385
  • 21 Ferland-McCollough D, Ozanne SE, Siddle K, Willis AE, Bushell M. The involvement of microRNAs in Type 2 diabetes. Biochem Soc Trans 2010; 38: 1565-1570
  • 22 Gallagher IJ, Scheele C, Keller P, Nielsen AR, Remenyi J, Fischer CP, Roder K, Babraj J, Wahlestedt C, Hutvagner G, Pedersen BK, Timmons JA. Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med 2010; 2: 9
  • 23 German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 2008; 26: 941-946
  • 24 Guerra-Assuncao JA, Enright AJ. Large-scale analysis of microRNA evolution. BMC Genomics 2012; 13: 218
  • 25 Guller I, Russell AP. MicroRNAs in skeletal muscle: their role and regulation in development, disease and function. J Physiol 2010; 588: 4075-4087
  • 26 Harriss DJ, Atkinson G. Ethical Standards in Sport and Exercise Science Research: 2016 Update. Int J Sports Med 2015; 36: 1121-1124
  • 27 Hecksteden A, Leidinger P, Backes C, Rheinheimer S, Pfeiffer M, Ferrauti A, Kellmann M, Sedaghat F, Meder B, Meese E, Meyer T, Keller A. miRNAs and sports: tracking training status and potentially confounding diagnoses. J Transl Med 2016; 14: 219
  • 28 Huntzinger E, Izaurralde E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12: 99-110
  • 29 Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol 2012; 6: 590-610
  • 30 Jung HJ, Suh Y. Circulating miRNAs in ageing and ageing-related diseases. J Genet Genomics 2014; 41: 465-472
  • 31 Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, Jeyaseelan K. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 2011; 6: e22839
  • 32 Kilian Y, Wehmeier UF, Wahl P, Mester J, Hilberg T, Sperlich B. Acute response of circulating vascular regulating micrornas during and after high-intensity and high-volume cycling in children. Front Physiol 2016; 7: 92
  • 33 Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39: D152-D157
  • 34 Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401-1414
  • 35 Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769-773
  • 36 Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015; 15: 321-333
  • 37 Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, Xiao C, Bezzerides V, Bostrom P, Che L, Zhang C, Spiegelman BM, Rosenzweig A. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 2015; 21: 584-595
  • 38 Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem 2015; 6: 162-208
  • 39 Nie Y, Sato Y, Wang C, Yue F, Kuang S, Gavin TP. Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice. FASEB J 2016; 30: 3745-3758
  • 40 Ogasawara R, Akimoto T, Umeno T, Sawada S, Hamaoka T, Fujita S. MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiol Genomics 2016; 48: 320-324
  • 41 Olivieri F, Capri M, Bonafe M, Morsiani C, Jung HJ, Spazzafumo L, Vina J, Suh Y. Circulating miRNAs and miRNA shuttles as biomarkers: Perspective trajectories of healthy and unhealthy aging. Mech Ageing Dev 2016; DOI: 10.1016/j.mad.2016.12.004.
  • 42 Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008; 30: 460-471
  • 43 Panwar B, Omenn GS, Guan Y. miRmine: a database of human miRNA expression profiles. Bioinformatics 2017; 33: 1554-1560
  • 44 Parr EB, Camera DM, Burke LM, Phillips SM, Coffey VG, Hawley JA. Circulating microRNA responses between 'high' and 'low' responders to a 16-wk diet and exercise weight loss intervention. PLoS One 2016; 11: e0152545
  • 45 Polakovicova M, Musil P, Laczo E, Hamar D, Kyselovic J. Circulating microRNAs as potential biomarkers of exercise response. Int J Mol Sci 2016; 17: E1553
  • 46 Robinson MM, Dasari S, Konopka AR, Johnson ML, Manjunatha S, Esponda RR, Carter RE, Lanza IR, Nair KS. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab 2017; 25: 581-592
  • 47 Russell AP, Lamon S. Exercise, skeletal muscle and circulating microRNAs. Prog Mol Biol Transl Sci 2015; 135: 471-496
  • 48 Sapp RM, Shill DD, Roth SM, Hagberg JM. Circulating microRNAs in acute and chronic exercise: More than mere biomarkers. J Appl Physiol 2017; 122: 702-717
  • 49 Sayed AS, Xia K, Salma U, Yang T, Peng J. Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases. Heart Lung Circ 2014; 23: 503-510
  • 50 Soci UP, Fernandes T, Barauna VG, Hashimoto NY, Mota GF, Rosa KT, Irigoyen MC, Phillips MI, de Oliveira EM. Epigenetic control of exercise training-induced cardiac hypertrophy by miR-208. Clin Sci (Lond) 2016; DOI: 10.1042/CS20160480.
  • 51 Tufekci KU, Meuwissen RL, Genc S. The role of microRNAs in biological processes. Methods Mol Biol 2014; 1107: 15-31
  • 52 Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science 2007; 318: 1931-1934
  • 53 Vickers KC, Rye KA, Tabet F. MicroRNAs in the onset and development of cardiovascular disease. Clin Sci (Lond) 2014; 126: 183-194
  • 54 Villanova L, Vernucci E, Pucci B, Pellegrini L, Nebbioso M, Mauri C, Marfe G, Spataro A, Fini M, Banfi G, Russo MA, Tafani M. Influence of age and physical exercise on sirtuin activity in humans. J Biol Regul Homeost Agents 2013; 27: 497-507
  • 55 Wardle SL, Bailey ME, Kilikevicius A, Malkova D, Wilson RH, Venckunas T, Moran CN. Plasma microRNA levels differ between endurance and strength athletes. PLoS One 2015; 10: e0122107
  • 56 Yovel G, Shakhar K, Ben-Eliyahu S. The effects of sex, menstrual cycle, and oral contraceptives on the number and activity of natural killer cells. Gynecol Oncol 2001; 81: 254-262
  • 57 Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015; 13: 17-24