Z Gastroenterol 2018; 56(02): 151-164
DOI: 10.1055/s-0043-121345
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Medikamentöse Therapie der Zöliakie – „from bench to bedside“

Drug therapy in coeliac disease – “from bench to bedside”
Jürgen Stein
1   Gastroenterologie/Ernährungsmedizin, DGD Kliniken Sachsenhausen, Frankfurt am Main, Deutschland
2   Interdisziplinäres Crohn-Colitis-Centrum Rhein-Main, Frankfurt am Main, Deutschland
,
Jörg-Dieter Schulzke
3   Medizinische Klinik für Gastroenterologie, Rheumatologie und Infektiologie, Bereich Ernährungsmedizin und Klinische Physiologie, Charité Centrum 13, Campus Benjamin Franklin, Berlin, Deutschland
,
Detlef Schuppan
4   Institut für Translationale Immunologie, Universitätsmedizin Mainz, Deutschland
5   Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
› Author Affiliations
Further Information

Publication History

09 March 2017

08 October 2017

Publication Date:
07 November 2017 (online)

Zusammenfassung

Die Zöliakie ist eine der weltweit häufigsten Erkrankungen mit einer geschätzten Prävalenz von etwa 0,5 – 1 %. Die Erkrankung entsteht als Folge einer Kombination von Umweltfaktoren (Glutenproteine von Weizen, Roggen oder Gerste) und genetischen Faktoren (hauptsächlich humane Leukozytenantigene HLA-DQ2 oder -DQ8). Aktuell stellt eine strikte glutenfreie Diät (GFD) die einzige Therapiemöglichkeit dar. Allerdings ist die Einhaltung dieser Diät schwierig, nicht zuletzt deshalb, weil Gluten in vielen Fertignahrungsmitteln enthalten ist. Folglich kann die konsequente Vermeidung von Gluten tiefe Einschnitte sowohl in der Nahrungsauswahl als auch im Sozialleben zur Folge haben. Zudem führt die GFD auch bei völlig adhärenten Patienten nicht in jedem Fall zu einer klinischen und histologischen Normalisierung. Deshalb ist das Interesse an (adjunktiven) nicht-diätischen Therapieansätzen für die Zöliakie groß. Ziel dieser Arbeit ist es, basierend auf pathophysiologischen Konzepten zur Zöliakie neueste pharmakologische Therapieansätze vorzustellen und zu diskutieren.

Abstract

Coeliac disease is one of the most common diseases worldwide, with an estimated global prevalence of 0.5 – 1 %. The disease is triggered by a combination of environmental (gluten proteins from wheat, rye or barley) and genetic factors (mainly the human leucocyte antigens HLA-DQ2 or -DQ8). At present, a strict gluten-free diet (GFD) represents the only treatment option. However, strict adherence to a GFD is challenging, since even highly motivated patients may be subject to inadvertent or background exposure to gluten. Thus, rigorous avoidance of gluten necessitates extensive constraint of patients’ food choices and social interactions. Moreover, even in fully adherent patients, a GFD may fail to induce clinical or histological normalisation. New (adjunctive) non-dietary therapeutic strategies for patients with coeliac disease are therefore of great interest. In this review, on the basis of the current understanding of its pathophysiology, we examine and discuss novel pharmacological approaches for the treatment of coeliac disease.

 
  • Literatur

  • 1 Felber J, Aust D, Baas S. et al. Results of a S2k-Consensus Conference of the German Society of Gastroenterolgy, Digestive- and Metabolic Diseases [DGVS] in conjunction with the German Coeliac Society [DZG] regarding coeliac disease, wheat allergy and wheat sensitivity. Z Gastroenterol 2014; 52: 711-743
  • 2 Schuppan D. Celiac disease: Pathogenesis, clinics, epidemiology, diagnostics, therapy. Bundesgesundheitsblatt Gesundheitsforschung. Gesundheitsschutz 2016; 59: 827-835
  • 3 Schuppan D, Zimmer KP. The diagnosis and treatment of celiac disease. Dtsch Arztebl Int 2013; 110: 835-846
  • 4 Kang JY, Kang AH, Green A. et al. Systematic review: worldwide variation in the frequency of coeliac disease and changes over time. Aliment Pharmacol Ther 2013; 38: 226-245
  • 5 Laass MW, Schmitz R, Uhlig HH. et al. The prevalence of celiac disease in children and adolescents in Germany. Dtsch Arztebl Int 2015; 112: 553-560
  • 6 Mustalahti K, Catassi C, Reunanen A. et al. The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med 2010; 42: 587-595
  • 7 Abadie V, Sollid LM, Barreiro LB. et al. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol 2011; 29: 493-525
  • 8 Green PH, Cellier C. Celiac disease. N Engl J Med 2007; 357: 1731-1743
  • 9 Green PH, Jabri B. Coeliac disease. Lancet 2003; 362: 383-391
  • 10 Schuppan D, Junker Y, Barisani D. Celiac disease: from pathogenesis to novel therapies. Gastroenterology 2009; 137: 1912-1933
  • 11 Green PH. The many faces of celiac disease: clinical presentation of celiac disease in the adult population. Gastroenterology 2005; 128: S74-S78
  • 12 Abadie V, Jabri B. IL-15: a central regulator of celiac disease immunopathology. Immunol Rev 2014; 260: 221-234
  • 13 Malamut G, Afchain P, Verkarre V. et al. Presentation and long-term follow-up of refractory celiac disease: comparison of type I with type II. Gastroenterology 2009; 136: 81-90
  • 14 Malamut G, Murray JA, Cellier C. Refractory celiac disease. Gastrointest Endosc Clin N Am 2012; 22: 759-772
  • 15 Rubio-Tapia A, Murray JA. Classification and management of refractory coeliac disease. Gut 2010; 59: 547-557
  • 16 Dicke WK, Weijers HA, Van De Kamer JH. Coeliac disease. II. The presence in wheat of a factor having a deleterious effect in cases of coeliac disease. Acta Paediatr 1953; 42: 34-42
  • 17 Fasano A, Catassi C. Clinical practice. Celiac disease. N Engl J Med 2012; 367: 2419-2426
  • 18 Collin P, Thorell L, Kaukinen K. et al. The safe threshold for gluten contamination in gluten-free products. Can trace amounts be accepted in the treatment of coeliac disease?. Aliment Pharmacol Ther 2004; 19: 1277-1283
  • 19 Catassi C, Fabiani E, Iacono G. et al. A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am J Clin Nutr 2007; 85: 160-166
  • 20 Hischenhuber C, Crevel R, Jarry B. et al. Review article: safe amounts of gluten for patients with wheat allergy or coeliac disease. Aliment Pharmacol Ther 2006; 23: 559-575
  • 21 van Overbeek FM, Uil-Dieterman IG, Mol IW. et al. The daily gluten intake in relatives of patients with coeliac disease compared with that of the general Dutch population. Eur J Gastroenterol Hepatol 1997; 9: 1097-1099
  • 22 Shewry PR. Wheat. J Exp Bot 2009; 60: 1537-1553
  • 23 Thompson T, Lee AR, Grace T. Gluten contamination of grains, seeds, and flours in the United States: a pilot study. J Am Diet Assoc 2010; 110: 937-940
  • 24 Hall NJ, Rubin GP, Charnock A. Intentional and inadvertent non-adherence in adult coeliac disease. A cross-sectional survey. Appetite 2013; 68: 56-62
  • 25 Tennyson CA, Simpson S, Lebwohl B. et al. Interest in medical therapy for celiac disease. Therap Adv Gastroenterol 2013; 6: 358-364
  • 26 Hall NJ, Rubin G, Charnock A. Systematic review: adherence to a gluten-free diet in adult patients with coeliac disease. Aliment Pharmacol Ther 2009; 30: 315-330
  • 27 Silvester JA, Weiten D, Graff LA. et al. Is it gluten-free? Relationship between self-reported gluten-free diet adherence and knowledge of gluten content of foods. Nutrition 2016; 32: 777-783
  • 28 Lee AR, Ng DL, Zivin J. et al. Economic burden of a gluten-free diet. J Hum Nutr Diet 2007; 20: 423-430
  • 29 Long KH, Rubio-Tapia A, Wagie AE. et al. The economics of coeliac disease: a population-based study. Aliment Pharmacol Ther 2010; 32: 261-269
  • 30 Oza SS, Akbari M, Kelly CP. et al. Socioeconomic Risk Factors for Celiac Disease Burden and Symptoms. J Clin Gastroenterol 2016; 50: 307-312
  • 31 Villafuerte-Galvez J, Vanga RR, Dennis M. et al. Factors governing long-term adherence to a gluten-free diet in adult patients with coeliac disease. Aliment Pharmacol Ther 2015; 42: 753-760
  • 32 Sverker A, Hensing G, Hallert C. “Controlled by food”- lived experiences of coeliac disease. J Hum Nutr Diet 2005; 18: 171-180
  • 33 Shah S, Akbari M, Vanga R. et al. Patient perception of treatment burden is high in celiac disease compared with other common conditions. Am J Gastroenterol 2014; 109: 1304-1311
  • 34 Hauser W, Gold J, Stein J. et al. Health-related quality of life in adult coeliac disease in Germany: results of a national survey. Eur J Gastroenterol Hepatol 2006; 18: 747-754
  • 35 Hauser W, Stallmach A, Caspary WF. et al. Predictors of reduced health-related quality of life in adults with coeliac disease. Aliment Pharmacol Ther 2007; 25: 569-578
  • 36 Black JL, Orfila C. Impact of coeliac disease on dietary habits and quality of life. J Hum Nutr Diet 2011; 24: 582-587
  • 37 Hallert C, Granno C, Hulten S. et al. Living with coeliac disease: controlled study of the burden of illness. Scand J Gastroenterol 2002; 37: 39-42
  • 38 Hallert C, Grant C, Grehn S. et al. Evidence of poor vitamin status in coeliac patients on a gluten-free diet for 10 years. Aliment Pharmacol Ther 2002; 16: 1333-1339
  • 39 Martin J, Geisel T, Maresch C. et al. Inadequate nutrient intake in patients with celiac disease: results from a German dietary survey. Digestion 2013; 87: 240-246
  • 40 Shepherd SJ, Gibson PR. Nutritional inadequacies of the gluten-free diet in both recently-diagnosed and long-term patients with coeliac disease. J Hum Nutr Diet 2013; 26: 349-358
  • 41 Vici G, Belli L, Biondi M. et al. Gluten free diet and nutrient deficiencies: A review. Clin Nutr 2016; 35: 1236-1241
  • 42 Barratt SM, Leeds JS, Sanders DS. Factors influencing the type, timing and severity of symptomatic responses to dietary gluten in patients with biopsy-proven coeliac disease. J Gastrointestin Liver Dis 2013; 22: 391-396
  • 43 Rubio-Tapia A, Rahim MW, See JA. et al. Mucosal recovery and mortality in adults with celiac disease after treatment with a gluten-free diet. Am J Gastroenterol 2010; 105: 1412-1420
  • 44 Barratt SM, Leeds JS, Sanders DS. Quality of life in Coeliac Disease is determined by perceived degree of difficulty adhering to a gluten-free diet, not the level of dietary adherence ultimately achieved. J Gastrointestin Liver Dis 2011; 20: 241-245
  • 45 Daum S, Cellier C, Mulder CJ. Refractory coeliac disease. Best Pract Res Clin Gastroenterol 2005; 19: 413-424
  • 46 Galli G, Esposito G, Lahner E. et al. Histological recovery and gluten-free diet adherence: a prospective 1-year follow-up study of adult patients with coeliac disease. Aliment Pharmacol Ther 2014; 40: 639-647
  • 47 Aziz I, Evans KE, Papageorgiou V. et al. Are patients with coeliac disease seeking alternative therapies to a gluten-free diet?. J Gastrointestin Liver Dis 2011; 20: 27-31
  • 48 Stein J, Schuppan D. Coeliac Disease – New Pathophysiological Findings and Their Implications for Therapy. Viszeralmedizin 2014; 30: 156-165
  • 49 Caminero A, Galipeau HJ, McCarville JL. et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 2016; 151: 670-683
  • 50 Osborne TB. The proteins of the wheat kernel. Carnegie Inst Wash Pub 1907; 84: 119
  • 51 Wieser H. Chemistry of gluten proteins. Food Microbiol 2007; 24: 115-119
  • 52 Frazer AC, Fletcher RF, Ross CA. et al. Gluten-induced enteropathy: the effect of partially digested gluten. Lancet 1959; 2: 252-255
  • 53 Shan L, Molberg O, Parrot I. et al. Structural basis for gluten intolerance in celiac sprue. Science 2002; 297: 2275-2279
  • 54 Dieterich W, Ehnis T, Bauer M. et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 1997; 3: 797-801
  • 55 Schumann M, Richter JF, Wedell I. et al. Mechanisms of epithelial translocation of the alpha(2)-gliadin-33mer in coeliac sprue. Gut 2008; 57: 747-754
  • 56 Schumann M, Siegmund B, Schulzke JD. et al. Celiac Disease: Role of the Epithelial Barrier. Cell Mol Gastroenterol Hepatol 2017; 3: 150-162
  • 57 Matysiak-Budnik T, Moura IC, Arcos-Fajardo M. et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med 2008; 205: 143-154
  • 58 Molberg O, McAdam SN, Korner R. et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 1998; 4: 713-717
  • 59 Qiao SW, Bergseng E, Molberg O. et al. Refining the rules of gliadin T cell epitope binding to the disease-associated DQ2 molecule in celiac disease: importance of proline spacing and glutamine deamidation. J Immunol 2005; 175: 254-261
  • 60 Qiao SW, Bergseng E, Molberg O. et al. Antigen presentation to celiac lesion-derived T cells of a 33-mer gliadin peptide naturally formed by gastrointestinal digestion. J Immunol 2004; 173: 1757-1762
  • 61 Kagnoff MF. Celiac disease: pathogenesis of a model immunogenetic disease. J Clin Invest 2007; 117: 41-9
  • 62 Schumann M, Daum S, Siegmund B. Pathophysiologie der Zöliakie. Der Gastroenterologe 2015; 10: 464-472
  • 63 De Re V, Caggiari L, Tabuso M. et al. The versatile role of gliadin peptides in celiac disease. Clin Biochem 2013; 46: 552-560
  • 64 Vader LW, Stepniak DT, Bunnik EM. et al. Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology 2003; 125: 1105-1113
  • 65 Vader W, Kooy Y, Van Veelen P. et al. The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 2002; 122: 1729-1737
  • 66 Singh P, Arora S, Lal S. et al. Risk of Celiac Disease in the First- and Second-Degree Relatives of Patients With Celiac Disease: A Systematic Review and Meta-Analysis. Am J Gastroenterol 2015; 110: 1539-1548
  • 67 Kupfer SS, Jabri B. Pathophysiology of celiac disease. Gastrointest Endosc Clin N Am 2012; 22: 639-660
  • 68 Nistico L, Fagnani C, Coto I. et al. Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut 2006; 55: 803-808
  • 69 Trynka G, Wijmenga C, van Heel DA. A genetic perspective on coeliac disease. Trends Mol Med 2010; 16: 537-550
  • 70 Kumar V, Wijmenga C, Withoff S. From genome-wide association studies to disease mechanisms: celiac disease as a model for autoimmune diseases. Semin Immunopathol 2012; 34: 567-580
  • 71 Meresse B, Malamut G, Cerf-Bensussan N. Celiac disease: an immunological jigsaw. Immunity 2012; 36: 907-919
  • 72 Trynka G, Hunt KA, Bockett NA. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 2011; 43: 1193-1201
  • 73 Dubois PC, Trynka G, Franke L. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 2010; 42: 295-302
  • 74 Klock C, Diraimondo TR, Khosla C. Role of transglutaminase 2 in celiac disease pathogenesis. Semin Immunopathol 2012; 34: 513-522
  • 75 Diraimondo TR, Klock C, Khosla C. Interferon-gamma activates transglutaminase 2 via a phosphatidylinositol-3-kinase-dependent pathway: implications for celiac sprue therapy. J Pharmacol Exp Ther 2012; 341: 104-114
  • 76 Stoven S, Murray JA, Marietta E. Celiac disease: advances in treatment via gluten modification. Clin Gastroenterol Hepatol 2012; 10: 859-862
  • 77 Liang L, Pinier M, Leroux JC. et al. Interaction of alpha-gliadin with polyanions: design considerations for sequestrants used in supportive treatment of celiac disease. Biopolymers 2010; 93: 418-428
  • 78 Pinier M, Verdu EF, Nasser-Eddine M. et al. Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology 2009; 136: 288-298
  • 79 Pinier M, Fuhrmann G, Galipeau HJ. et al. The copolymer P(HEMA-co-SS) binds gluten and reduces immune response in gluten-sensitized mice and human tissues. Gastroenterology 2012; 142: 316-325 e1–12
  • 80 Gass J, Khosla C. Prolyl endopeptidases. Cell Mol Life Sci 2007; 64: 345-355
  • 81 Stepniak D, Spaenij-Dekking L, Mitea C. et al. Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am J Physiol Gastrointest Liver Physiol 2006; 291: G621-G629
  • 82 Edens L, Dekker P, van der Hoeven R. et al. Extracellular prolyl endoprotease from Aspergillus niger and its use in the debittering of protein hydrolysates. J Agric Food Chem 2005; 53: 7950-7957
  • 83 Salden BN, Monserrat V, Troost FJ. et al. Randomised clinical study: Aspergillus niger-derived enzyme digests gluten in the stomach of healthy volunteers. Aliment Pharmacol Ther 2015; 42: 273-285
  • 84 Tack GJ, van de Water JM, Bruins MJ. et al. Consumption of gluten with gluten-degrading enzyme by celiac patients: a pilot-study. World J Gastroenterol 2013; 19: 5837-5847
  • 85 Shan L, Marti T, Sollid LM. et al. Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem J 2004; 383: 311-318
  • 86 Kurppa K, Hietikko M, Sulic AM. et al. Current status of drugs in development for celiac disease. Expert Opin Investig Drugs 2014; 23: 1079-1091
  • 87 Lahdeaho ML, Kaukinen K, Laurila K. et al. Glutenase ALV003 Attenuates Gluten-Induced Mucosal Injury in Patients With Celiac Disease. Gastroenterology 2014; 146: 1649-1658
  • 88 Murray JA, Kelly CP, Green PH. et al. No Difference Between Latiglutenase and Placebo in Reducing Villous Atrophy or Improving Symptoms in Patients With Symptomatic Celiac Disease. Gastroenterology 2017; 152: 787-798 e2
  • 89 Lee SK, Lo W, Memeo L. et al. Duodenal histology in patients with celiac disease after treatment with a gluten-free diet. Gastrointest Endosc 2003; 57: 187-191
  • 90 Ehren J, Moron B, Martin E. et al. A food-grade enzyme preparation with modest gluten detoxification properties. PLoS One 2009; 4: e6313
  • 91 Janssen G, Christis C, Kooy-Winkelaar Y. et al. Ineffective degradation of immunogenic gluten epitopes by currently available digestive enzyme supplements. PLoS One 2015; 10: e0128065
  • 92 Krishnareddy S, Stier K, Recanati M. et al. Commercially available glutenases: a potential hazard in coeliac disease. Therap Adv Gastroenterol 2017; 10: 473-481
  • 93 van Elburg RM, Uil JJ, Mulder CJ. et al. Intestinal permeability in patients with coeliac disease and relatives of patients with coeliac disease. Gut 1993; 34: 354-357
  • 94 Schulzke JD, Bentzel CJ, Schulzke I. et al. Epithelial tight junction structure in the jejunum of children with acute and treated celiac sprue. Pediatr Res 1998; 43: 435-441
  • 95 Heyman M, Abed J, Lebreton C. et al. Intestinal permeability in coeliac disease: insight into mechanisms and relevance to pathogenesis. Gut 2012; 61: 1355-1364
  • 96 Menard S, Lebreton C, Schumann M. et al. Paracellular versus transcellular intestinal permeability to gliadin peptides in active celiac disease. Am J Pathol 2012; 180: 608-615
  • 97 Schumann M, Gunzel D, Buergel N. et al. Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut 2012; 61: 220-228
  • 98 Tripathi A, Lammers KM, Goldblum S. et al. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA 2009; 106: 16799-16804
  • 99 Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 2011; 91: 151-175
  • 100 Fasano A, Baudry B, Pumplin DW. et al. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci USA 1991; 88: 5242-5246
  • 101 Vanuytsel T, Vermeire S, Cleynen I. The role of Haptoglobin and its related protein, Zonulin, in inflammatory bowel disease. Tissue Barriers 2013; 1: e27321
  • 102 Leffler DA, Kelly CP, Abdallah HZ. et al. A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am J Gastroenterol 2012; 107: 1554-1562
  • 103 Kelly CP, Green PH, Murray JA. et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther 2013; 37: 252-262
  • 104 Leffler DA, Kelly CP, Green PH. et al. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial. Gastroenterology 2015; 148: 1311-9 e6
  • 105 Wang C, Henrik Rasmussen H, Perrow W. et al. Larazotide Acetate, a First In-Class, Novel Tight Junction Regulator, Meets Primary Endpoint and Significantly Reduces Signs and Symptoms of Celiac Disease in Patients on a Gluten-Free Diet: Results of a Multicenter, Randomized, Placebo Controlled Trial. Gastroenterology 2014; 146: 15
  • 106 Stepniak D, Wiesner M, de Ru AH. et al. Large-scale characterization of natural ligands explains the unique gluten-binding properties of HLA-DQ2. J Immunol 2008; 180: 3268-3278
  • 107 Kapoerchan VV, Wiesner M, Hillaert U. et al. Design, synthesis and evaluation of high-affinity binders for the celiac disease associated HLA-DQ2 molecule. Mol Immunol 2010; 47: 1091-1097
  • 108 Juse U, Arntzen M, Hojrup P. et al. Assessing high affinity binding to HLA-DQ2.5 by a novel peptide library based approach. Bioorg Med Chem 2011; 19: 2470-2477
  • 109 Juse U, van de Wal Y, Koning F. et al. Design of new high-affinity peptide ligands for human leukocyte antigen-DQ2 using a positional scanning peptide library. Hum Immunol 2010; 71: 475-481
  • 110 Badarau E, Collighan RJ, Griffin M. Recent advances in the development of tissue transglutaminase (TG2) inhibitors. Amino Acids 2013; 44: 119-127
  • 111 Badarau E, Mongeot A, Collighan R. et al. Imidazolium-based warheads strongly influence activity of water-soluble peptidic transglutaminase inhibitors. Eur J Med Chem 2013; 66: 526-530
  • 112 Ozaki S, Ebisui E, Hamada K. et al. Potent transglutaminase inhibitors, dithio beta-aminoethyl ketones. Bioorg Med Chem Lett 2011; 21: 377-379
  • 113 Ozaki S, Ebisui E, Hamada K. et al. Potent transglutaminase inhibitors, aryl beta-aminoethyl ketones. Bioorg Med Chem Lett 2010; 20: 1141-1144
  • 114 Watts RE, Siegel M, Khosla C. Structure-activity relationship analysis of the selective inhibition of transglutaminase 2 by dihydroisoxazoles. J Med Chem 2006; 49: 7493-7501
  • 115 Sulic AM, Kurppa K, Rauhavirta T. et al. Transglutaminase as a therapeutic target for celiac disease. Expert Opin Ther Targets 2015; 19: 335-348
  • 116 Daum S, Ipczynski R, Heine B. et al. Therapy with budesonide in patients with refractory sprue. Digestion 2006; 73: 60-68
  • 117 Brar P, Lee S, Lewis S. et al. Budesonide in the treatment of refractory celiac disease. Am J Gastroenterol 2007; 102: 2265-2269
  • 118 Ciacci C, Maiuri L, Russo I. et al. Efficacy of budesonide therapy in the early phase of treatment of adult coeliac disease patients with malabsorption: an in vivo/in vitro pilot study. Clin Exp Pharmacol Physiol 2009; 36: 1170-1176
  • 119 Di Sabatino A, Rovedatti L, Rosado MM. et al. Increased expression of mucosal addressin cell adhesion molecule 1 in the duodenum of patients with active celiac disease is associated with depletion of integrin alpha4beta7-positive T cells in blood. Hum Pathol 2009; 40: 699-704
  • 120 Lobaton T, Vermeire S, Van Assche G. et al. Review article: anti-adhesion therapies for inflammatory bowel disease. Aliment Pharmacol Ther 2014; 39: 579-594
  • 121 Keshav S, Vanasek T, Niv Y. et al. A randomized controlled trial of the efficacy and safety of CCX282-B, an orally-administered blocker of chemokine receptor CCR9, for patients with Crohn’s disease. PLoS One 2013; 8: e60094
  • 122 Mention JJ, Ben Ahmed M, Begue B. et al. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 2003; 125: 730-745
  • 123 Malamut G, El Machhour R, Montcuquet N. et al. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest 2010; 120: 2131-2143
  • 124 Maiuri L, Ciacci C, Auricchio S. et al. Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology 2000; 119: 996-1006
  • 125 Yokoyama S, Watanabe N, Sato N. et al. Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc Natl Acad Sci USA 2009; 106: 15849-15854
  • 126 Baslund B, Tvede N, Danneskiold-Samsoe B. et al. Targeting interleukin-15 in patients with rheumatoid arthritis: a proof-of-concept study. Arthritis Rheum 2005; 52: 2686-2692
  • 127 van Vollenhoven RF, Fleischmann R, Cohen S. et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med 2012; 367: 508-519
  • 128 Sandborn WJ, Ghosh S, Panes J. et al. A Phase 2 Study of Tofacitinib, an Oral Janus Kinase Inhibitor, in Patients With Crohn’s Disease. Clin Gastroenterol Hepatol 2014; 12: 1485-1493.e2
  • 129 Sandborn WJ, Ghosh S, Panes J. et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med 2012; 367: 616-624
  • 130 Yokoyama S, Perera PY, Waldmann TA. et al. Tofacitinib, a janus kinase inhibitor demonstrates efficacy in an IL-15 transgenic mouse model that recapitulates pathologic manifestations of celiac disease. J Clin Immunol 2013; 33: 586-594
  • 131 Utech M, Ivanov AI, Samarin SN. et al. Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell 2005; 16: 5040-5052
  • 132 Bethune MT, Siegel M, Howles-Banerji S. et al. Interferon-gamma released by gluten-stimulated celiac disease-specific intestinal T cells enhances the transepithelial flux of gluten peptides. J Pharmacol Exp Ther 2009; 329: 657-668
  • 133 Beaurepaire C, Smyth D, McKay DM. Interferon-gamma regulation of intestinal epithelial permeability. J Interferon Cytokine Res 2009; 29: 133-144
  • 134 Przemioslo RT, Lundin KE, Sollid LM. et al. Histological changes in small bowel mucosa induced by gliadin sensitive T lymphocytes can be blocked by anti-interferon gamma antibody. Gut 1995; 36: 874-879
  • 135 Reinisch W, de Villiers W, Bene L. et al. Fontolizumab in moderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis 2010; 16: 233-242
  • 136 Hommes DW, Mikhajlova TL, Stoinov S. et al. Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn’s disease. Gut 2006; 55: 1131-1137
  • 137 Valitutti F, Barbato M, Aloi M. et al. Autoimmune enteropathy in a 13-year-old celiac girl successfully treated with infliximab. J Clin Gastroenterol 2014; 48: 264-266
  • 138 Turner SM, Moorghen M, Probert CS. Refractory coeliac disease: remission with infliximab and immunomodulators. Eur J Gastroenterol Hepatol 2005; 17: 667-669
  • 139 Gillett HR, Arnott ID, McIntyre M. et al. Successful infliximab treatment for steroid-refractory celiac disease: a case report. Gastroenterology 2002; 122: 800-805
  • 140 Costantino G, della Torre A, Lo Presti MA. et al. Treatment of life-threatening type I refractory coeliac disease with long-term infliximab. Dig Liver Dis 2008; 40: 74-77
  • 141 Chaudhary R, Ghosh S. Infliximab in refractory coeliac disease. Eur J Gastroenterol Hepatol 2005; 17: 603-604
  • 142 Booth V, Keizer DW, Kamphuis MB. et al. The CXCR3 binding chemokine IP-10/CXCL10: structure and receptor interactions. Biochemistry 2002; 41: 10418-10425
  • 143 Lammers KM, Khandelwal S, Chaudhry F. et al. Identification of a novel immunomodulatory gliadin peptide that causes interleukin-8 release in a chemokine receptor CXCR3-dependent manner only in patients with coeliac disease. Immunology 2011; 132: 432-440
  • 144 Mayer L, Sandborn WJ, Stepanov Y. et al. Anti-IP-10 antibody (BMS-936557) for ulcerative colitis: a phase II randomised study. Gut 2014; 63: 442-450
  • 145 Daveson AJ, Jones DM, Gaze S. et al. Effect of Hookworm Infection on Wheat Challenge in Celiac Disease – A Randomised Double-Blinded Placebo Controlled Trial. Plos One 2011; 6: e17366
  • 146 Tye-Din JA, Stewart JA, Dromey JA. et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci Transl Med 2010; 2: 41ra51
  • 147 Brown GJ, Daveson J, Marjason JK. et al. A Phase 1 Study to Determine Safety, Tolerability and Bioactivity of Nexvax2 (R) in HLA DQ2+Volunteers With Celiac Disease Following a Long-Term, Strict Gluten-Free Diet. Gastroenterology 2011; 140: S437-S438
  • 148 Kaukinen K, Lindfors K, Maki M. Advances in the treatment of coeliac disease: an immunopathogenic perspective. Nat Rev Gastroenterol Hepatol 2014; 11: 36-44
  • 149 Pyle GG, Paaso B, Anderson BE. et al. Effect of pretreatment of food gluten with prolyl endopeptidase on gluten-induced malabsorption in celiac sprue. Clin Gastroenterol Hepatol 2005; 3: 687-694
  • 150 Tye-Din JA, Anderson RP, Ffrench RA. et al. The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo. Clin Immunol 2010; 134: 289-295
  • 151 Paterson BM, Lammers KM, Arrieta MC. et al. The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther 2007; 26: 757-766