Subscribe to RSS
DOI: 10.1055/s-0043-124940
Mikrobielle Biomarker zur Krebsfrüherkennung
Microbial Biomarkers for Early Cancer DetectionPublication History
Publication Date:
01 February 2018 (online)
Zusammenfassung
Im Bereich Krebsfrüherkennung zeigt sich schon heute das Potenzial der Mikrobiomforschung für klinische Anwendungen. Auch wenn die zugrunde liegenden Mechanismen und Ursachen bisher weitgehend unbekannt sind, kann die krank heitsbedingte Veränderung des Mikrobioms als Angriffspunkt zur Erforschung neuartiger diagnostischer und prognostischer Tests genutzt werden. Dies trifft insbesondere auf Dickdarmkrebs zu, wo sich bereits konkrete Möglichkeiten für den klinischen Einsatz abzeichnen. In diesem Artikel fassen wir die Fortschritte der letzten Jahre aber auch Schwierigkeiten in der Entwicklung mikrobieller Biomarker für die Krebsfrüherkennung zusammen.
Abstract
The human microbiome – the vast amount of microbes that colonize our body – play an important role in maintaining our health. Changes in microbiome composition have been linked to multiple diseases including cancer. Although mechanisms and causalities of these associations still have to be uncovered, microbiome alterations across various stages of disease can be utilized for novel diagnostic and prognostic tests. Research on biomarkers extracted from the gut microbiome has in particular focused on colorectal cancer, where clinical use is already on the horizon. For example, multiple microbial taxonomic markers such as Fusobacterium nucleatum and other oral pathogens have been identified in human feces with potential for non-invasive diagnostics and prognostics. The article summarizes the recent developments, but also limitations and challenges for the development of microbiome-based biomarkers for cancer early detection.
-
Literatur
- 1 Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol 2016; 14: e1002533
- 2 Li J, Jia H, Cai X. et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 2014; 32: 834-841
- 3 Voigt AY, Costea PI, Kultima JR. et al. Temporal and technical variability of human gut metagenomes. Genome Biol 2015; 16: 73
- 4 Turnbaugh PJ, Hamady M, Yatsunenko T. et al. A core gut microbiome in obese and lean twins. Nature 2009; 457: 480-484
- 5 Schloissnig S, Arumugam M, Sunagawa S. et al. Genomic variation landscape of the human gut microbiome. Nature 2013; 493: 45-50
- 6 Qin J, Li Y, Cai Z. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60
- 7 Karlsson FH, Tremaroli V, Nookaew I. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498: 99-103
- 8 Forslund K, Hildebrand F, Nielsen T. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528: 262-266
- 9 Noguera-Julian M, Rocafort M, Guillen Y. et al. Gut Microbiota Linked to Sexual Preference and HIV Infection. EBioMedicine 2016; 5: 135-146
- 10 Le ChatelierE, Nielsen T, Qin J. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500: 541-546
- 11 Qin N, Yang F, Li A. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513: 59-64
- 12 Michaud DS. Role of bacterial infections in pancreatic cancer. Carcinogenesis 2013; 34: 2193-2197
- 13 Gao S, Li S, Ma Z. et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect Agent Cancer 2016; 11: 3
- 14 Kullander J, Forslund O, Dillner J. Staphylococcus aureus and squamous cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev 2009; 18: 472-478
- 15 Castellarin M, Warren RL, Freeman JD. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012; 22: 299-306
- 16 Flanagan L, Schmid J, Ebert M. et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis 2014; 33: 1381-1390
- 17 Kostic AD, Chun E, Robertson L. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell host & microbe 2013; 14: 207-215
- 18 Kostic AD, Gevers D, Pedamallu CS. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012; 22: 292-298
- 19 Zeller G, Tap J, Voigt AY. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 2014; 10: 766
- 20 Rubinstein MR, Wang X, Liu W. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell host & microbe 2013; 14: 195-206
- 21 Arthur JC, Gharaibeh RZ, Muhlbauer M. et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun 2014; 5: 4724
- 22 Cuevas-Ramos G, Petit CR, Marcq I. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A 2010; 107: 11537-11542
- 23 Goodwin AC, Destefano ShieldsCE, Wu S. et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilisinduced colon tumorigenesis. Proc Natl Acad Sci U S A 2011; 108: 15354-15359
- 24 Toprak NU, Yagci A, Gulluoglu BM. et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 2006; 12: 782-786
- 25 National Cancer Institute. Helicobacter pylori and Cancer. Im Internet: https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/h-pylori-fact-sheet-q3 Stand: 04.12.2016
- 26 Koeth RA, Wang Z, Levison BS. et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19: 576-585
- 27 Wang Z, Klipfell E, Bennett BJ. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472: 57-63
- 28 Weir TL, Manter DK, Sheflin AM. et al. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One 2013; 8: e70803
- 29 Wu S, Rhee KJ, Albesiano E. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009; 15: 1016-1022
- 30 Feng Q, Liang S, Jia H. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 2015; 6: 6528
- 31 Yu J, Feng Q, Wong SH. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2015; pii
- 32 Baxter NT, Ruffin 4th MT, Rogers MA. et al. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med 2016; 8: 37
- 33 Vogtmann E, Hua X, Zeller G. et al. Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing. PLoS One 2016; 11: e0155362
- 34 Wang T, Cai G, Qiu Y. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 2012; 6: 320-329
- 35 Zackular JP, Rogers MA, Ruffin 4th MT. et al. The Human Gut Microbiome as a Screening Tool for Colorectal Cancer. Cancer Prev Res (Phila) 2014; 7: 1112-1121
- 36 Iida N, Dzutsev A, Stewart CA. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013; 342: 967-970
- 37 Viaud S, Saccheri F, Mignot G. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342: 971-976
- 38 Jameson JL, Longo DL. Precision medicine–personalized, problematic, and promising. N Engl J Med 2015; 372: 2229-2234
- 39 van Nood E, Vrieze A, Nieuwdorp M. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013; 368: 407-415
- 40 Li SS, Zhu A, Benes V. et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 2016; 352: 586-589
- 41 Mima K, Nishihara R, Qian ZR. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2015; pii
- 42 Ito M, Kanno S, Nosho K. et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer 2015; 137: 1258-1268
- 43 Yu J, Chen Y, Fu X. et al. Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer 2016; 139: 1318-1326
- 44 Mima K, Sukawa Y, Nishihara R. et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol 2015; 1: 653-661
- 45 Goodwin AC, Destefano ShieldsCE, Wu S. et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilisinduced colon tumorigenesis. Proc Natl Acad Sci USA 2011; 108: 15354-15359
- 46 Inaba H, Sugita H, Kuboniwa M. et al. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol 2014; 16: 131-145
- 47 Urbaniak C, Gloor GB, Brackstone M. et al. The Microbiota of Breast Tissue and Its Association with Breast Cancer. Appl Environ Microbiol 2016; 82: 5039-5048
- 48 Nagaraja V, Eslick GD. Systematic review with meta-analysis: the relationship between chronic Salmonella typhi carrier status and gall-bladder cancer. Aliment Pharmacol Ther 2014; 39: 745-750
- 49 Hua-Feng X, Yue-Ming W, Hong L. et al. A meta-analysis of the association between Chlamydia pneumoniae infection and lung cancer risk. Indian J Cancer 2015; 52 (Suppl. 02) e112-e115
- 50 Wroblewski LE, Peek RM Jr. Helicobacter pylori, Cancer, and the Gastric Microbiota. Adv Exp Med Biol 2016; 908: 393-408